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Teff cells are key drivers of both humoral and cellular immune 
responses, orchestrating adaptive (antibodies, cytotoxic cells) 
and innate (macrophages, granulocytes) immune responses. 

This range of abilities has long raised the issue of functional diver-
sity, which was documented by functional assays even before the 
molecular identification of major histocompatibility complex 
(MHC) and T cell antigen receptor (TCR) molecules, the central 
axis of T cell activation and differentiation1,2. A key advance was the 
demonstration that functional phenotypes of different T cell clones 
were keyed to the cytokines they produced3,4, coining the TH1/TH2 
nomenclature of TH subsets. TH1 cells secrete IFN-γ and mainly 
support inflammatory and cytotoxic responses; TH2 cells produce 
IL-4, IL-5 or IL-13 and principally help B cells produce antibod-
ies. This division has since been revised several times to add more 
subsets (IL-17-secreting TH17 cells, IL-9-secreting TH9 cells, follicu-
lar helpers (TFH)5–7), but the core notion that Teff cells belong to dis-
crete and largely stable states defined by the cytokines they produce 
has endured8,9. Different types of infectious or allergic challenges 
elicit different Teff ‘flavors’ (TH1 cells are generally associated with 
intracellular pathogens, TH2 cells with helminth parasites, TH17 
cells with bacterial and fungal infections), and these TH distinctions 
also have implications for immune-mediated diseases10. Indeed, the 
TH paradigm has elicited parallel cosmologies in macrophages, γδ 
T cells or innate lymphoid cells (ILCs)11.

However, this model was questioned almost since its incep-
tion12,13. First, because its attractive simplicity could lead to shoe-
horning of immune functions (for example, publications in the 
1990s erroneously tagged immune diseases as either TH1 or TH2). 
Second, many reports documented that the secretion of IFN-γ, IL-4 

or IL-17 is not always mutually exclusive14. Plasticity between TH 
subtypes was demonstrated, suggesting that these cell states are not 
as stable and terminally differentiated as originally inferred from 
TH lines grown in supraphysiological cytokine concentrations9,13. 
Further, while some cell surface markers were proposed as indi-
cators of differentiated TH types, they often proved non-exclusive. 
Thus, while TH subsets were most precisely defined in vitro, their 
in vivo counterparts remained elusive.

Here, we aimed to assess the spectrum of phenotypic states that 
Teff cells can adopt in vivo, leveraging the unbiased potential of 
single-cell genomics15. In essence, we returned to the clonal analysis 
that founded the TH paradigm3,4, but now with the ability to evalu-
ate the entirety of a cell’s transcriptome and chromatin structure, 
rather than only a few preselected cytokines or markers. We ana-
lyzed T cells in the colonic lamina propria (LP), a frontline tissue 
under continuous and diverse challenge, by comparing CD4+ T cells 
in mice under germ-free conditions, carrying normal commensal 
microbiota or infected with agents that elicit diversely biased Teff 
responses. The results indicate that Teff cells form a continuum in 
transcriptional space, but highlight some novel phenotypes. The 
production of key cytokines did show skewed distributions, but 
these did not identify the discrete cell clusters that might have been 
expected from the TH paradigm.

Results
A continuum of effector phenotypes in colonic CD4+ Teff cells. To 
probe the transcriptional landscape of CD4+ Teff cells in an unbiased 
manner, we performed single-cell RNA sequencing (scRNA-seq) on 
total CD4+ T cells from the colonic LP, starting with conventionally  
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housed (SPF) C57BL/6 mice. Two experiments were performed 
with droplet-based scRNA-seq (Extended Data Fig. 1a,b and 
Supplementary Table 1; datasets were analyzed individually; repli-
cates served to confirm conclusions). It was straightforward to parse, 
with standard clustering, CD4+ T cells into the four main groups 
expected from flow cytometry (Fig. 1a): regulatory T cells (Treg; 
Foxp3+) and their Rorc+ and Ikzf2+ (Helios) subsets, naive T con-
ventional cells (naive Tconv; Cd44−Ccr7+) and Teff cells (Cd44+Ccr7−). 
To assess the influence of the commensal microbiota on this distri-
bution, we generated scRNA-seq datasets of colonic CD4+ T cells 
from SPF and germ-free mice (Fig. 1b), revealing similar clusters, 
with fewer RORγ+ Treg and Teff cells in germ-free mice, as expected.

To assess which phenotypic states gut Teff cells can adopt, we 
reclustered the Teff population from SPF mice. Here, with the excep-
tion of cycling cells, we could not observe any clear partitioning of 
cells, but rather a quasi-continuous cloud (Fig. 1c, left). To search 
for distinctions corresponding to the major recognized Teff types, we 
manually curated from published signatures short but robust and 
highly specific gene sets, which included the defining cytokines, 
driving TFs and a few correlated transcripts but left out generic 
activation-associated transcripts or transcripts with poor specific-
ity (Supplementary Table 2). The TH2 signature showed polarized  

expression, while cells expressing the TH17- and especially 
TH1-associated signatures were dispersed more widely across the 
continuum (Fig. 1c, right). To ensure that this continuum was not 
due to the high dropout rate of scRNA-seq, we reanalyzed a pub-
lished dataset from colonic Teff cells that included fewer cells but was 
sequenced to greater depths16. These data also showed a continu-
ous distribution and dispersion of the TH signatures (Extended Data 
Fig. 1c). If cytokines do not represent the main axes of variance in 
colonic T cells, what does? To this end, we used a simple clustering 
strategy, which showed that the driving variance lay in the degree of 
activation of Teff cells, represented by typical activation transcripts 
such as Cd69 or Nr4a1 (Fig. 1d). Teff cells with a lower degree of 
activation overexpressed Klf2 and S1pr1, a combination shown to 
restrain CD4+ T cell differentiation17. Thus, the main heterogeneity 
of Teff cells in the colonic LP corresponds to a gradient of activation 
in response to commensal microbiota but not predominantly to a 
commitment to produce one cytokine or the other.

Different intestinal infections elicit divergent Teff phenotypes. 
It thus seemed difficult to identify discrete TH1 or TH17 cell pop-
ulations in normal mice. We hypothesized that under baseline 
conditions, Teff cells were only partially polarized because they 
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Fig. 1 | The transcriptional landscape of CD4+ T cells in the colon. a, scRNA-seq analysis of total colonic LP CD4+ T cells from SPF mice (computed from 
the 658 most variable genes). t-SNE representation, color coded by k-nearest neighbor (KNN) cell clusters (top), identified based on the expression of 
prototypic transcripts (bottom). b, scRNA-seq analysis of total colonic LP CD4+ T cells from germ-free and SPF mice. Top, t-SNE representation, color coded 
by cell of origin. Bottom, marked clusters are identified based on the expression of prototypic transcripts. c, t-SNE representation, restricted to the CD4+ Teff 
cells selected in a (t-SNE computed from the 584 most variable genes). Right, overlay of combined expression of prototypic TH gene sets (Supplementary 
Table 2). d, Heatmap of Teff cells divided into two clusters by KNN clustering. Representative genes overexpressed in each cluster are shown.
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were incompletely activated by commensals, with only ‘stubs’ of 
more differentiated states that the cells could potentially reach. 
We thus further polarized the T cell pools by infecting mice with 
pathogens known to elicit biased immune responses: (1) ∆aroA 
Salmonella enterica (serovar Typhimurium), a non-invasive mutant 
that elicits IFN-γ-dominated responses, (2) Citrobacter rodentium, 
a strong inducer of IL-17 and (3) Heligmosomoides polygyrus and 
Nippostrongylus brasiliensis, two helminths that provoke proto-
typic type 2 responses (Fig. 2a). Infection times (11–13 d) allowed 
responses to develop and achieve full bias. Flow cytometry con-
firmed the production of the expected cytokines, including some 
IFN-γ and IL-17A double-producer cells, as expected (Fig. 2b). In a 
first experiment, Teff cells from control or infected mice were tagged 
with DNA-coded antibodies (‘hashtagged’; ref. 18) and comingled 
for sorting, microfluidic bead capture and library construction, 
making for a robust intra-batch comparison (Fig. 2a). As in unin-
fected mice, CD4+ T cells clustered into Treg cells, naive T cells and 
Teff cells (Extended Data Fig. 2a).

Teff cells were then considered on their own, with dimension-
ality reduction on t-distributed stochastic neighbor embedding 
(t-SNE) (Fig. 2c) or uniform manifold approximation and projec-
tion (UMAP) (Extended Data Fig. 2b) plots, which revealed a domi-
nant partitioning according to the infectious agent used. Outside 
the main ‘blob’, some Teff cells did break out into discrete popula-
tions, but we could not detect well-demarcated cell clusters that 
expressed characteristic TH gene sets. These mapped to skewed but 
broad swaths of cells (cells with high levels of the TH2 gene set were 
best demarcated, those with the TH17 gene set were biased but dis-
persed, and cells with high levels of the TH1 gene set were found 
almost throughout; Fig. 2c and Extended Data Fig. 2b). This lack of 
segregation was robust across gene sets (if anything, it was more dif-
fuse using another curated signature set based on ref. 19) (Extended 
Data Fig. 2c). The expression of Ifng and Il17a transcripts also over-
lapped, consistent with the double-producer cells detected by flow 
cytometry (Extended Data Fig. 2d). These conclusions were also 
true for a replicate set of colonic CD4+ Teff cells from mice infected 
with the same pathogens (Extended Data Fig. 2e). The dominant 
influence of the infectious microbe over the TH phenotype marked 
by cytokine production was objectivized by comparing the overall 
Euclidean distance between all cells expressing Il17a and Ifng tran-
scripts from the different conditions; Teff cells expressing Ifng or 
Il17a transcripts from each infection type were much closer than 
their cytokine-sharing counterparts in mice with other infections 
(Fig. 2d).

We applied a panel of clustering and biclustering algorithms in an 
attempt to break the cell cloud into clusters that coincided with the 
expression of TH signature sets, but none of the clusters thus gener-
ated were uniquely enriched for any one TH signature or cytokine 
(Extended Data Fig. 3a–c). To objectively verify the continuity in the 
distribution of transcriptomes of Teff cells, we used Hartigan’s dip test 
of multimodality20 after applying a projection defined by the mini-
mum separation hyperplane21 to the expression of the most variable 
genes. The results showed that Teff, Treg and naive Tconv cells signifi-
cantly segregated by Hartigan’s test (Fig. 2e, top), while there was no 
significant break in the distances within Teff pools (Fig. 2e, middle 
and bottom). These results confirmed that Teff cells occupy a con-
tinuum point cloud that is not easily separable into distinct clusters.

One explanation for this continuous Teff distribution is that they 
included different subsets of the canonical TH1, TH2 and TH17 arche-
types. However, projection of differentiating genes reported for the 
‘pathogenesis subsets’ within TH17 cells22,23 did not demarcate dis-
tinct subsets of IL-17-producing cells, although it showed a skewed 
distribution more generally (Extended Data Fig. 3d). Similarly, a 
reported distinction between ‘homeostatic’ and ‘inflammatory’ 
TH17 cells24, the latter being elicited by C. rodentium infection, may 
have mostly resulted from infection rather than from distinct TH17 

subsets, as the corresponding signature did not specifically demar-
cate IL-17-producing cells (Extended Data Fig. 3e).

Deep machine learning tools can efficiently discover combina-
torial and non-linear patterns that are difficult to discern conven-
tionally. In another attempt to identify patterns that would uniquely 
identify IL-17- or IFN-γ-producing cells, we optimized and trained 
a deep neural network (DNN) to classify cells into IL-17- and 
IFN-γ-producing groups based on their single-cell transcriptomes. 
As a positive control, this architecture could be trained to recog-
nize Teff and Treg cells from the held-back test set (Methods). The 
DNN did partially identify Ifng- and Il17a-positive cells in the test 
set (Extended Data Fig. 4a,b; 90.2% and 60.7% accuracy for Ifng- 
and Il17a-positive cells, respectively). However, using the integrated 
gradients method to measure the importance of the transcripts 
used by the model to support this identification showed little repro-
ducibility in independent training runs (Extended Data Fig. 4c). 
Beyond a few transcripts known to correlate with Il17a (Tmem176a, 
Capg), only Il22 had a strong and reproducible influence, which is 
an internal control given its known coregulation with Il17. Indeed, 
when Il22 was left out, prediction efficacy dropped to 28.7%. Hence, 
even with a pliable artificial intelligence tool, it seemed difficult to 
identify robust TH1 or TH17 transcriptome patterns.

Finally, we assessed the distribution of surface markers that are 
associated with TH subsets and are commonly used for cell sorting 
(Ccr5 and Cxcr3 for TH1; Ccr6 and Il1r2 for TH17). Ccr6 and Il1r2 
proved to be mutually exclusive, with only partial overlap with cells 
transcribing Il17a (Fig. 2f). Ccr5 and Cxcr3 transcripts were widely 
distributed across the cloud and only partially overlapped with the 
TH1 signature. Flow cytometric analysis of LP cells after Salmonella 
infection confirmed these results (Fig. 2f). Thus, not only were clas-
sic TH subsets not clearly identifiable in the transcriptional data, but 
the flow cytometry markers used to identify them had limited con-
gruence in this context.

Teff phenotypes are distinguished by infecting agents, not by TH 
type. Colonic Teff cells clustered according to the type of infection, 
rather than by the cytokine they expressed. Accordingly, analysis 
of variable transcripts present in Il17a- and Ifng-expressing cells 
revealed divergent patterns, with blocks of coexpressed transcripts 
that largely aligned with the infection (Fig. 3a). To validate this result 
and exclude technical pitfalls of scRNA-seq, we used an Il17a-GFP 
reporter mouse line and performed population RNA-seq on colonic 
GFP-positive cells at baseline or after infection with Salmonella or 
Citrobacter (Fig. 3b). Echoing the single-cell data, principal compo-
nent analysis (PCA) showed that IL-17A+ cells from each condition 
clustered separately from each other (Fig. 3c). The direct compari-
son of IL-17A+ cells from Salmonella- or Citrobacter-infected mice 
yielded 277 differential transcripts (at fold change (FC) > 2, false 
discovery rate < 0.05; Fig. 3d). Among this set, transcripts with dif-
ferential representation in the single-cell data showed similar biases. 
Thus, the majority of changes imparted by infection were unrelated 
to Il17 or Ifng expression or membership in a TH class.

The primary determinants of Teff variability. Their expression pat-
terns within the projection plots of Figs. 1c and 2c indicated that pro-
totypic TH1 or TH17 signature sets did not mark discrete sets of cells. 
To turn the question to a gene-centric perspective, we asked which 
coregulated modules of transcripts existed among these CD4+ Teff 
cells, and whether these might track with cytokine production. First, 
a PCA showed that the gene sets in the principal components (PCs) 
with the most variance contained few TH-associated signature genes 
(Extended Data Fig. 5a). Next we analyzed gene–gene correlation, 
leveraging coexpression across thousands of individual cells25. The 
transcripts for some cytokines did show significant positive coex-
pression (Il4 or Il5 and Il13; Il17a and Il17f; Extended Data Fig. 5b).  
We separated coregulated gene modules (affinity propagation) that 
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defined independent transcriptional programs (Extended Data  
Fig. 5c). Gene ontology analysis showed that while most modules 
were related to generic functions (Supplementary Table 3), a few 
small modules (M7, M11, M13) included some elements of pro-
totypical TH signatures, for example, cytokines and TFs (Ifng, Il13, 
Tbx21, Gata3). But when projected across the cell space, most mod-
ules showed broadly differential representation as a gradient across 
all cells, cutting across cells expressing Ifng or Il17a transcripts 
(Extended Data Fig. 5d, with the exception of cell cycle genes in 
M1 and M2, the MHC-II module in M9 and the TH2-like cluster 
in M7). Thus, the major components of variability among Teff cells 

highlighted a continuous cloud of phenotypic variance, rather than 
discrete cell sets.

Teff phenotypes over time. A possible explanation for the lack of 
discrete TH1 and TH17 identities was that the 13-d time point cho-
sen for analysis might be not be ideal and that at 13 d, polarized 
cells might have faded or have yet to appear. To test this possibility, 
we analyzed LP CD4+ cells at different times after Salmonella infec-
tion, again hashtagged in a single batch. The CD4 response, denoted 
by total CD4+ T proportions and the effector:naive cell ratio, was 
highest in the day 10–17 window (Extended Data Fig. 6a,b).  
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A marked shift in the overall Teff transcriptomes occurred from 
day 10 onwards (Fig. 4a). Transcripts that distinguished these two 
superclusters included many of the Salmonella-specific transcripts 
identified above but no prototypical TH signature transcripts 
(Extended Data Fig. 6c). In these samples, IL-17+ cells were bet-
ter demarcated than in earlier experiments, and IFN-γ+ cells were 
again broadly spread out, with no indication of a time-dependent 
convergence (Fig. 4b). Both types of cytokine-producing cells were 
shifted during the ‘day 10 transition’, again implicating the infec-
tious agent as the dominant driver of Teff phenotypes at the height 
of infection.

Next, we asked whether one could identify distinct lineages of 
Il17- and Ifng-expressing cells within CD4+ Teff cells at different 
infection times, using the sequences of rearranged Tcra and Tcra 
genes to lineage-trace cells originating from the same progenitor. A 
total of 579 repeated clonotypes were observed (defined by shared 
nucleotide sequences for both chains and P or N nucleotide addi-
tion that ensured true clonal amplification; examples in Fig. 4c). 
These repeated clonotypes expanded with time in Teff cells but not in 
naive Tconv or in Treg cells, consistent with infection-driven expansion 
(Extended Data Fig. 6d). Importantly, expanded Teff clones were not 
restricted to the expression of one cytokine; most Il17-expressing 
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cells within a clonotype had cousins that expressed Ifng or both Ifng 
and Il17 (Fig. 4d). That expanded clonotypes did not appear commit-
ted to produce a single cytokine could be explained by parallel dif-
ferentiation of the initial precursor. However, the median Euclidean 
distance between members of a clonotype did not increase with 
time, if anything, it contracted beyond day 10, whether computed 
from the TH signature gene sets (Fig. 4e) or the most variable genes 
(Extended Data Fig. 6e), indicating that cells were not diversifying. 
Thus, this lineage tracing revealed no parallel tracks of differentia-
tion for Ifng and Il17 expression; the Salmonella-driven dominance 
of IFN-γ production extended across all amplified clonotypes.

Teff phenotypes at the chromatin level. Accessibility of enhancer 
elements in chromatin is a more proximal readout of a cell’s dif-
ferentiated state than mRNA levels, which are affected by 
post-transcriptional events. To explore the relationship between 
Il17- and Ifng-expressing cells at the chromatin level, we performed 
single-cell assay for transposase-accessible chromatin sequenc-
ing (scATAC-seq)26 on 4,671 LP CD4+ T cells from colons of 
Salmonella-infected mice. As with scRNA-seq, three distinct clus-
ters could be distinguished by clustering and identification based on 
the accessibility of typical indicator genes (Treg, naive Tconv cells and a 
cloud of Teff cells; Fig. 5a). We leveraged a framework of pan-immune 
open chromatin regions (OCRs) and charts of those most likely to 
be associated with activity of a given gene27, extracting OCRs that 
best predicted the expression of Tbx21 and Rorc and averaging their 
accessibility to calculate Tbx21 and Rorc ‘chromatin scores’ per 
cell. We validated these scores by showing that they clearly distin-
guished ATAC-seq profiles from in vitro-derived TH1 and TH17 cells  
(Fig. 5b, top). However, when projected on the UMAP plot of ex vivo 
Teff cells, the Tbx21 and Rorc scores were broadly distributed, with 
diffuse local maxima, but no cell cluster displayed either exclusively 
(Fig. 5b, bottom). We also examined chromatin profiles across the 
Rorc and Tbx21 loci themselves, by collapsing the reads from cells 
selected as having high or low signals at Rorc- or Tbx21-controlling 
OCRs and asking whether one would be anticorrelated with the 
other. Clearly, chromatin openness at one locus was independent 
of the state at the other locus (Fig. 5c). Thus, chromatin opening at 
master regulator loci did not split identifiable TH1 and TH17 subsets.

As an alternative to analyzing the Rorc and Tbx21 loci, we com-
putationally mapped the differential activity of OCRs enriched in 
DNA motifs recognized by these TFs relative to background OCRs28. 
T-bet and GATA3 motif scores were broadly distributed (Fig. 5d), 
with a more concentrated over-representation of RORγ motif scores 
(acknowledging the caveat that these motifs may be recognized by 
the related TFs EOMES and RORα, respectively).

If RORγ and T-bet are not the main discriminators of chroma-
tin accessibility of Teff cells, then what is? We broadened the analy-
sis to all TF motifs in the JASPAR database, ranking them by their 
overall variability (null distribution from randomized data; Fig. 5e). 
This ranking was dominated by motifs for several factors, foremost 
those for the AP-1 (FOS, JUN, etc.) and the IRF (IRF4, IRF2, IRF9) 
families or for other factors related to T cell activation (BACH2), 
while the T-box and nuclear receptor families (T-bet, EOMES and 
RORγ, RORα) figured less prominently. Correspondingly, scores 
for Fos and Irf4 motifs segregated most distinctly (Fig. 5f). Thus, in 
line with mRNA data, which showed that generic activation was the 
main driver of Teff diversity, activation drivers (AP-1, IRF4, BACH2) 
seemed to have a more important contribution in parsing Teff cells 
than classic master regulators.

A functional continuum of CD4+ Teff cells. A continuum in which 
different functions are distributed along poles and gradients is more 
challenging to address experimentally than demarcated groups of 
cells. To validate the notion of a continuum of Teff phenotypic states, 
we followed a strategy similar to one described recently29–31 in which 

cell sorting was not steered to well-defined cell populations but per-
formed by integrating information in a multidimensional marker 
space (Fig. 6a). We first identified transcripts in the scRNA-seq 
data that showed different gradients of expression through the Teff 
continuum and encoded cell surface molecules detectable by flow 
cytometry (Klrg1, Cxcr6, Icos, Cd69, Ly6a (encodes SCA-1); Fig. 
6b). Colon LP cells were resolved by flow cytometry with antibodies 
against these markers, combining results in a multiparameter t-SNE 
projection (Fig. 6c). In this proteomic space, no specific clusters of 
cells were identified by any one marker (perhaps with the exception 
of the receptor KLRG1); all were distributed as quantitative gradi-
ents as for the mRNA data. We then empirically determined gates to 
pilot a cell sorter to purify cells belonging to specific areas of the cell 
cloud (Fig. 6d), yielding three distinct cell populations. Such cells 
were sorted from colon LP of Salmonella-infected mice for pheno-
typic and functional testing.

Conventional RNA-seq on these sorted populations showed a 
differential transcript representation, with enrichments that cor-
responded well to signatures predicted from the scRNA-seq data 
(Fig. 6e). Differentially expressed genes included, in population 
B, transcripts associated with a more resting state (Ccr7, Sell and 
Tcf7), while IL-17-associated transcripts (Rorc, Il23r, Il17re) were 
over-represented in population A. For a test of function, we stimu-
lated these sorted cells and measured cytokine secretion by ELISA 
(Fig. 6f). Distinctive patterns were observed, although, as expected, 
no single pool was associated with the exclusive secretion of any one 
cytokine. Populations A and C secreted significantly more IFN-γ 
than did population B, whereas population A secreted more lL-17A 
and IL-22. But both populations encompassed all potentialities, only 
in quantitatively different amounts, confirming that the scRNA-seq 
data captured true continuous Teff heterogeneity.

New Teff populations. As presented above, the Teff pool in 
SPF or infected mice included, beyond the main ‘cloud’, a few 
well-distinguished populations (Fig. 2c).

1. A small Teff population (ISG-T) was peculiar because it 
expressed high levels of IFN-induced signature transcripts (ISGs) 
(Fig. 7a, left) and was over-represented after infection with 
Salmonella or Citrobacter. Comparison with profiles induced in 
T cells by type 1 or type 2 IFNs indicated that ISG-T cells likely 
respond to type 1 IFNs (Fig. 7a, right). Their existence suggested 
either a small subset uniquely responsive to IFN or normal Teff cells 
that happened to reside in a small anatomical compartment where 
IFN was particularly abundant. Similar subsets have been described 
in CD4+ T cells from house dust mite-infected lungs and kidneys 
from patients with lupus nephritis32,33.

2. Another population expressed high levels of the surface 
markers Cd160, Crtam and Lag3, the neural gene Nrgn and several 
chemokines (Fig. 7b). We sorted this CD4+CRTAM+ population 
for bulk RNA-seq, confirming the particular signature (Fig. 7c). 
Pathway analysis showed enrichment of signal transducer and acti-
vator of transcription (STAT)3, prolactin and neuregulin signaling 
pathways, hinting at a possible origin.

3. The most intriguing population was myeloid-like T (MyT) 
cells, which unexpectedly showed many myeloid cell transcripts, 
such as Apoe, Lyz2 or C1qa, and several transcripts for MHC-II 
(Fig. 7d). This expression of myeloid transcripts was not wholesale; 
only a fraction of genes with strong T versus myeloid differential 
expression was represented in MyT cells (Fig. 7e), several of which 
corresponded to innate antimicrobial receptors or defense mecha-
nisms (Lyz2, C1q, Cfp, Tyrobp). Correspondingly, a small MHC-II+ 
subset of TCRβ+CD4+CD44hi Teff cells was detected by cytometry 
(Extended Data Fig. 7a), for which the RNA-seq transcriptome 
confirmed the single-cell data (Extended Data Fig. 7b). We applied 
‘CITE-seq’ for protein detection with DNA-barcoded antibodies34, 
revealing a good correspondence between mRNA and surface 
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H2-Ab and CD14 proteins (Fig. 7f) in MyT cells, at protein levels 
that were only somewhat lower than those seen in true myeloid 
cells. In the experiments in Fig. 4, αβTCRs detected in MyT cells 

were shared with other Teff cells from the same mice, suggesting that 
the MyT phenotype was not acquired during thymic differentiation, 
but late in the periphery after antigen encounter. MyT cells may  
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correspond to the unusual CD3+CD14+ cells in human blood 
recently reported to also increase upon infection35, which was attrib-
uted to stable doublets. However, several arguments suggested that 
MyT cells are not doublets (there were very few myeloid cells in the 
sorted CD4+TCRβ+ datasets, normal unique molecular identifiers 
(UMI) or cell counts; partial myeloid gene representation). Other 
than doublet formation or cell fusions, explanations for MyT cells 
include exosomal transfer of transcripts from myeloid to Teff cells 
or the activation of unusual transcriptional modules. To formally 
resolve this issue, we created bone marrow chimeras with a 50:50 
mix of congenically marked stem cells from wild-type (WT) and 
MHC-II-deficient donors with an inactivating neomycin inser-
tion in H2-Ab1, a mutation that results in altered Ab1 transcripts36 
(Fig. 7g). After reconstitution for 10 weeks, we sorted TCRβ+CD4+ 
cells of both donor origins for RNA-seq, analyzing the sequence 
reads at H2-Ab1. Should MyT cells result from doublets or mRNA 
transfer, TCRβ+CD4+ cells of knockout (KO) origin would have 
acquired WT H2-Ab1 transcripts. This was not the case (Fig. 7h), 
as these T cells expressed transcripts from their own H2-Ab1 gene. 
Thus, MyT cells are bona fide αβTCR+ T cells that activate a seg-
ment of the myeloid transcriptome. Their origin and significance 
remain to be established. However, there may be a precedent in the 
myeloid-like T cells that constitute the high-risk ‘mixed phenotype 
acute leukemia’ (ref. 37).

Discussion
Our study set out to map the landscape of phenotypes that Teff cells 
in the gut can adopt when stressed by microbial infection, which 
is related to the long-running question of Teff cell heterogeneity. 
Whether evaluated at the transcriptome or the chromatin level, our 
results show that Teff cells are molded by infections in a profound 
and specific manner, one that does not readily conform to TH ste-
reotypes and also gives rise to other intriguing new cell states.

From the realization over 40 years ago that distinct functions 
of TH cells reside in different cells1, the field has striven to subdi-
vide Teff cells into discrete subsets. Since the seminal discoveries of 
Mossman and Coffman3 and the coining of the TH1 and TH2 seman-
tic, these distinctions have been anchored by cytokine production, 
an anchor which has persisted despite repeated demonstrations of 
dual-expressing cells, TH sub-subsets22,23,38 and plasticity between 
TH states9,13,14. Our results suggest that Teff transcriptional identities 
form a ‘polarized continuity’ and cannot be parsed out into discrete 
TH cell types, even in the context of infections expected to drive 
focused differentiation. Nor does progressing infection result in 
phenotypic divergence between clearly distinct states. This model 
does not imply homogeneity, however, as the different poles of the 
phenotypic cloud do show a strong preference for producing one 
cytokine over another (most marked for IL-4 or IL-5).

This view of Teff cell heterogeneity differs from previously pro-
posed concepts of cell plasticity, in which cells of defined pheno-

types can switch between states that are otherwise coherent and 
reproducible9,13,14. The plasticity concept implies that discrete states 
do exist, but are not irrevocable. We find that there are no defined 
states to interconvert between. This view also diverges from the 
notion of sub-subsets (for example, pathogenic TH17 cells (refs. 
22,23,39,40)), which also implied discrete cell sets that could be further 
subdivided. Such sub-subsets also seemed absent and, in hindsight, 
may represent the spread of IL-17-producing cells across different 
regions of the phenotypic cloud.

One might argue that the polarized continuity represents tran-
sient intermediates between cell states. But, then, most cells would 
be intermediates. Velocity testing of differentiation within the Teff 
continuum41 gave no indication of directional progression, and the 
time course study showed no particular convergence toward more 
distinct Teff phenotypes, overall or for amplified progeny of the same 
precursor. Importantly, chromatin analysis revealed that key con-
trolling loci, Rorc and Tbx21, opened largely independently of each 
other.

Several studies are also consistent with this view of ‘polarized 
continuity’ within Teff cells that is dominantly molded by microbes. 
Cloned human memory CD4+ T cells showed phenotypic  
divergence related to the initiating microbe42. Proteomic analy-
sis by mass cytometry revealed a wide phenotypic range in CD4+ 
Teff cells unleashed by Ctla4 deficiency43. In tumor-infiltrating  
cells, scRNA-seq studies also found gradients of transcriptional 
phenotypes44,45, as in other broad ‘landscape’ studies in which 
T cells were notoriously difficult to parse finely46,47. A recent 
analysis of airway-resident T cells also reported a continuous  
disposition of Teff cells in house dust mite infection32, showing that 
our results are not gut-specific. A continuous phenotypic spec-
trum was described for ILCs48, contrasting with commonly used  
categorization11. Rather, ILC phenotypes can be described by a 
series of ‘topics’48 that are conceptually similar to and partially 
overlapping with the modules reported here. While this work  
was under review, Cano-Gamez et al. also proposed a model of 
human T cell activation in vitro dominated by ‘continuous effec-
torness’ (ref. 49).

In conclusion, this study sheds light on the T cell response to 
infectious challenges: broad responses that adapt to each microbe, 
dominant coregulated gene modules that are not anchored by cyto-
kines, different leading transcriptional drivers and intriguing new 
cell subsets.
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Fig. 7 | New Teff populations. a, The ISG-T subset. Left, IFN type I signature50 overlaid on the Teff t-SNE plot. Right, genes overexpressed in the ISG-T 
cluster overlaid on top of genes upregulated in CD4+ T cells upon administration of IFN-α or IFN-γ50. b, scRNA-seq expression data of genes in the Crtam+ 
cluster. c, Volcano plot from RNA-seq data of sorted CRTAM+ versus CRTAM− colon Teff cells; over- and underexpressed genes in the Crtam+ T cluster in 
scRNA-seq data are shown in red and blue, respectively, with significance of overlap. d, Expression in MyT cells of genes overlaid on the general t-SNE 
plot of Fig. 2c. Typical myeloid cell transcripts (top) and typical T cell transcripts (bottom). e, FC histograms of myeloid-specific genes. In myeloid versus 
CD4+ T cells (ImmGen RNA-seq data) (left) and in MyT versus other colon Teff cells (Salmonella-infected, data from Fig. 2c) (right). The x axis is on a 
logarithmic scale. f, Contour plot representing RNA and protein expression in the single-cell data from Fig. 5 (x axis, normalized scRNA-seq; y axis, raw 
cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) counts) for MHC-II (top) or CD14 (bottom). Individual cells are represented 
by dots and are colored by their classification based on unsupervised clustering. g, Experimental schematic. Bone marrow from WT CD45.1 and CD45.2 
H2-Ab1−/− mice was mixed and transferred to irradiated Cd45.1/2 hosts. After 8 weeks, mice were infected with Salmonella, and 13 d later, the WT or KO LP 
CD4+ T cells were sorted for RNA-seq. h, Top, schematic representation of the WT or KO H2-Ab1 loci (a neomycin resistance gene (neo) was inserted into 
the second exon36). Bottom, the position of RNA-seq reads in colonic CD4+ Teff cells stemming from WT or H2-Ab1 KO stem cells in mixed bone marrow 
chimeras infected with Salmonella.
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Methods
Mice. Male C57BL/6 mice were purchased from Jackson Laboratory. Il17AGFP/+ 
mice (JAX, C57BL/6-Il17atm1Bcgen/J) were a gift from J. Huh (Harvard University). 
OT-II TCR-transgenic mice were obtained from Jackson Laboratory (B6.
Cg-Tg(TcraTcrb)425Cbn/J). H2-Ab1-deficient mice were previously described36. 
To construct bone marrow chimeras, bone marrow cells were harvested from both 
femurs and tibias and treated with ACK buffer (Lonza) to remove red blood cells. 
Cd45.1−/−;Cd45.2−/− mice were irradiated (10 Gy) and reconstituted with equal 
proportions (~5 million cells each) of Cd45.1 and Cd45.2 (Ab KO) bone marrow 
cells. All mice were bred and maintained in our specific pathogen-free facilities at 
Harvard Medical School (IACUC protocols IS1257, IS187-3, IS2221).

Flow cytometry. Cells from colon LP were prepared as previously described51. 
Briefly, intestinal tissues were treated with RPMI containing 1 mM dithiothreitol, 
20 mM EDTA and 2% FBS at 37 °C for 15 min to remove epithelial cells, and 
then they were minced and dissociated in collagenase solution (1.5 mg ml−1 
collagenase II (Gibco), 0.5 mg ml−1 dispase (Gibco) and 1% FBS in RPMI) with 
constant stirring at 37 °C for 45 min. Single-cell suspensions were then filtered 
and washed with a 4% RPMI solution. For cytokine analyses, cells were treated 
with 10 ng ml−1 phorbol 12-myristate 13-acetate (Sigma), 1 μM ionomycin (Sigma) 
and 1× protein transport inhibitor cocktail (eBioscience, 00-4980-03) for 3.5 h in 
10% FBS, RPMI. For intracellular staining of cytokines and TFs, cells were stained 
for surface markers and fixed in eBioscience Foxp3 buffer overnight, followed 
by permeabilization in eBioscience (both 00-5523-00) buffer for 45 min in the 
presence of antibodies. Fluorescence profiles were acquired on a BD Symphony 
instrument, and analyses were performed with FlowJo (Tree Star) software.

Antibodies used in the study included anti-mouse (m)CD45 (30-F11), 
anti-mCD19 (6D5), anti-mCD4 (RM4-5), anti-mTCRβ (H57-597), anti-mCD44 
(IM7), anti-mCD25 (PC61), anti-mFOXP3 (FJK-16s), anti-mIFN-γ (XMG1.2), 
anti-mIL-17A (TC-11-18H10.1), anti-mIL-5 (TRFK5), anti-mIL-13 (W17010B), 
anti-mCCR6 (29-2L17), anti-mIL-1R2 (4E2), anti-mKLRG1 (2F1/KLRG1), 
anti-mICOS (C398.4A), anti-mCXCR6 (SA051D1), anti-mCD69 (H1.2F3), 
anti-SCA-1 (D7), anti-mCRTAM (11-5/CRTAM), anti-I/A I-E(M5/114.15.2), 
anti-mCD45.1 (A20), and anti-mCD45.2 (104). All antibodies were diluted 1:100, 
with the exception of CD25 (1:50).

For the ‘t-SNE sort’, the goal was to sort cells defined combinatorially by a 
panel of markers, even if they were not readily identifiable as well-demarcated 
populations on conventional two-parameter flow cytometry profiles. Flow 
cytometry t-SNE plots were generated in FlowJo version 10 from gated 
CD4+TCRβ+CD44+CD25− cells stained for markers found by manual inspection 
to have non-discrete and non-correlated expression in the scRNA-seq data and 
thus were most appropriate to represent the phenotypic continuity within the Teff 
phenotypic cloud (KLRG1, ICOS, CD69, SCA-1 and CXCR6). Selected regions that 
demarcated clusters on the t-SNE continuum were then backgated onto normal 
two-parameter plots, from which gating instructions interpretable by a cell sorter 
were drawn (by a manual and iterative process). The gates were drawn such that 
more than 90% of the events in the selected region would be within the sort gates. 
These combinatorial gates were then applied to sort colonic Teff cells.

Multiplex ELISA. Cells (1,000 to 10,000) were sorted (single sort) into 100 µl 
T cell medium (RPMI 1640, 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 
0.05 mM 2-mercaptoethanol, 2 mM l-glutamine, 100 mg ml−1 streptomycin and 
100 mg ml−1 penicillin). Cells were plated in round-bottom 96-well plates with 
a 1:1 ratio of anti-CD3/CD28 beads (Miltenyi) and were incubated at 37 °C for 
24 h. Supernatants were collected and analyzed with the LEGENDplex T Helper 
Cytokine version 2 and the Proinflammatory Chemokine Panel kits (BioLegend) 
according to the manufacturer’s instructions. Samples were acquired with the BD 
Symphony instrument and analyzed with LEGENDplex software. Paired Student’s 
t-test was used for significance assessment.

Infections. For infection with Salmonella, mice were gavaged with 100 µl of 
200 mg ml−1 streptomycin in water and, 24 h later, gavaged with 109 S. enterica 
(serovar Typhimurium) ∆aroA52 (a gift from D. Littman, New York University). 
For infection with Citrobacter, mice were gavaged with 5 × 108 C. rodentium53. 
Unless noted otherwise, mice were sacrificed at day 13 after infection. For 
helminth infections54, mice were gavaged with 200 H. polygyrus L3 larvae in 200 µl 
H2O or subcutaneously injected with 500 L3 larvae of N. brasiliensis in 100 µl PBS 
and sacrificed 11 d later.

Low input RNA-seq. All cells were double-sorted. For the final sort, 1,000 
cells were collected directly into 5 µl lysis buffer (TCL buffer (Qiagen) with 1% 
2-mercaptoethanol), and the lysates were frozen after 5 min. Smart-seq2 libraries 
were prepared as previously described12. Reads were aligned to the mouse genome 
(GENCODE GRCm38/mm10 primary assembly and gene annotation version 
M16; https://www.gencodegenes.org/mouse/release_M16) or to the human 
genome (GENCODE human release 27; reference genome sequence, GRCh38/
hg38; annotation, GENCODE version 27) with STAR 2.5.4a. The ribosomal RNA 
gene annotations were removed from the general transfer format (GTF) file. 
The gene-level quantification was calculated by featureCounts (http://subread.

sourceforge.net/). Raw read count tables were normalized by the median of ratios 
method with the DESeq2 package from Bioconductor and then converted to 
GenePattern GCT and CLS format. Samples with less than 3 million uniquely 
mapped reads were automatically excluded from normalization to mitigate the 
effect of samples with poor quality on normalized counts. Normalized read counts 
were filtered for robust expression (>10) to avoid confounders from low-level noise 
and processed in the Multiplot suite and Morpheus (https://software.broadinstitute.
org/morpheus/). PCA was done using the prcomp function in R on all genes with 
expression higher than 0 in any sample.

Single-cell RNA-seq. Intestinal tissues were treated with RPMI containing 1 mM 
dithiothreitol, 20 mM EDTA and 2% FBS at 37 °C for 15 min to remove epithelial 
cells, and then they were minced and dissociated in 1 mg ml−1 collagenase VIII 
(Sigma), 1 µg ml−1 DNase and 1% FCS in RPMI with constant stirring at 37 °C 
for 20 min. Single-cell suspensions were then filtered and washed with 4% FCS 
in RPMI medium. Single-cell suspensions were stained on ice for 30 min with 
antibodies to CD4, TCRβ, CD19 and CD45 (BioLegend) and 20 ng ml−1 DAPI 
(BioLegend) as a viability dye. T cells were then sorted on an Astrios MoFlo 
instrument (Beckman Coulter) as DAPI−CD45+CD4+TCRβ+CD19− cells. For 
single-sample processing, cells were sorted directly into PBS with BSA for a final 
concentration of 0.04% BSA. For cell hashtagging, TotalSeq-A hashtag antibodies 
(SPF, hashtag 1; C. rodentium, hashtag 2; S. enterica, hashtag 3; N. brasiliensis, 
hashtag 4; H. polygyrus, hashtag 5) were added to each sample individually at 
the same time as other antibodies. All samples were sorted together directly into 
RPMI with 2% FCS and subsequently spun down and reconstituted in 33 µl PBS 
with 0.04% BSA. All samples were loaded on the 10x Chromium Controller (10x 
Genomics) within 30 min of sorting. Libraries were prepared using Chromium 
Single Cell 3′ Reagent Kits version 2 according to the manufacturer’s protocol. 
Hashtag oligonucleotide (HTO) libraries were prepared as described in ref. 18. 
Libraries were sequenced together on the Illumina HiSeq 4000.

Single-cell RNA-seq data analysis. Gene counts were obtained by aligning reads to 
the mm10 genome using Cell Ranger software (version 1.3) (10x Genomics). HTO 
counts were obtained by using the CITE-seq-Count package34. Single-cell data were 
initially analyzed using the Seurat package55. HTOs were assigned to cells using 
the HTODemux function, and doublets were eliminated from analysis. Cells with 
less than 1,000 UMIs or 400 genes and more than 4,000 UMIs or 0.05% of reads 
mapped to mitochondrial genes were also excluded from the analysis. Treg cells and 
naive CD4+ cells were removed from analysis by using the SubsetData function. 
Data were normalized using the NormalizeData function and scaled using the 
ScaleData function, regressing out number of UMIs and percentage of expressed 
mitochondrial genes. Variable genes were found by the FindVariableGenes 
function, using genes with mean expression over 0.0125 and four UMIs per cell. 
Dispersion cutoff was calculated based on the Fano factor distribution per gene. 
By these means, 550–950 variable genes were selected in different Teff datasets. 
PCs were calculated using the RunPCA function, and significant PCs were 
selected using the JackStraw function. t-SNE and KNN clusters were computed 
on significant PCs using the RunTSNE and FindClusters functions, respectively. 
UMAP dimensionality reduction was calculated on significant PCs using the 
RunUMAP function. TH signatures scores were computed as the mean expression 
of signature genes per cell.

Diffusion maps are useful for identifying differentiation trajectories, as they 
allow for pseudotemporal ordering of single cells in a high-dimensional gene 
expression space56. Diffusion maps were generated using the Seurat package 
RunDiffusion function with default settings.

Imputation can denoise the cell count matrix and fill in missing transcripts 
by data diffusion57. Imputation was performed using the built-in Seurat 
AddImputedScore function with default parameters on all variable genes. PCs and 
t-SNE data were then r-recomputed based on the imputed values.

PCs were identified and plotted using the Seurat PCHeatmap function with 
default parameters.

Correlation coefficient analysis (CCA)55 was performed by running the 
RunMultiCCA function on 500 variable genes between the four samples. Twenty 
significant correlation coefficients (CC) were selected for alignment using the 
AlignSubspace function. t-SNE and KNN clustering were run as previously, based 
on 20 CCs.

To compute Euclidean distances within groups of cytokine-expressing cells, 
cytokine-positive cells were identified as expressing one or more normalized UMIs. 
Distances between each selected cell to other cells were calculated for the 1,000 
top variable genes using the dist function in R. P values were computed using the 
Mann–Whitney test. For dendrogram analysis, cytokine-expressing cells were 
identified as above, and distances between different samples expressing different 
cytokines were computed by the dist function in R with default settings on the 
top 1,000 variable genes. Hierarchical clustering (hclust function in R) was then 
employed to generate the dendrogram.

Highly TH-specific gene sets (Supplementary Table 2) were generated by 
manual curation, starting mainly from published signatures as well as other 
scRNA-seq datasets19,32,58–61 and selecting genes that were reproducibly present in 
these signatures. We removed transcripts that overlapped between resulting TH 
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gene sets, often simple markers of cell activation frequent in such signatures, as 
well as some non-T transcripts that frequently contaminate published signatures 
(for example, Cd19, Cd79a, Cd8a). We also added several transcripts known 
to correlate with Ifng, Il17a or Il4 and Il13 (Cxcr3, Tmem176a, Areg). The gene 
signature average for these genes was then calculated with the AddModuleScore 
function in Seurat version 3. Expression of cell cycle genes was calculated based on 
the CellCycleScoring function in Seurat version 3 (cc.genes based on ref. 62)

Gene module generation. After filtering transcripts for robust expression (those 
that appeared in more than ten cells in any one of the infected or SPF samples), 
gene–gene correlations (Pearson, cor function in R) were calculated within each 
dataset. The ten matrices (one for each replicate and condition) of pairwise gene–
gene correlations were then averaged for Extended Data Fig. 5c.

To select the genes with the highest correlations, a threshold correlation score 
in the 98th percentile was calculated for each gene, and 588 genes with correlation 
scores higher than 0.05 were selected for further analysis. Gene modules were then 
identified by affinity propagation63 using the APCluster R package with a negative 
distance similarity function, and the number of input similarities (q) was set to 0. 
Gene modules were overlaid on the t-SNE plot by computing the mean expression 
of module genes for each cell.

Clustering approaches. BackSPIN. The data were normalized with Seurat 
parameters and then subset to the top 588 most variable genes according to 
the Seurat pipeline. To determine whether significant clusters would emerge 
from more elaborate clustering methods, we used BackSPIN, an unsupervised 
biclustering method that sorts both genes and cells into clusters64. The motivation 
behind BackSPIN was that by iterative partitioning, the algorithm would be able 
to cluster true cell subsets and gene subsets together. One important parameter 
for BackSPIN involves defining the partitioning ‘rate’ (that is, how much to subset 
the groups at each iterative process). This was set at the default of 0.1. Other 
parameters specified were the number of levels (numLevels) to partition by (set 
at 2), the number of top variable genes to cluster (set at 596), the initial number 
of iterations (first_run_iters; set to 10) and subsequent number of iterations 
(runs_iters; set to 8). The default initial decrease rate of 0.1 (first_run_iters) and 
the default subsequent decrease rate (runs_step) of 0.3 were used. The decrease 
rates helped to determine the precision of clusters. Finally, threshold values were 
set at the default value of 2 for both minimum numbers of cells (split_limit_c) and 
genes (split_limit_g). A threshold score of 1.15 was used to determine when to stop 
partitioning the data (stop_const), and the default threshold for determining which 
group a gene would be assigned to was kept at 0.015.

BISCUIT. BISCUIT iteratively learns to identify features in each cluster and create 
clusters with these specific features by imputing and normalizing the data45. The 
motivation behind BISCUIT is that by imputing the data, variation provided by 
genes that may have dropped out is captured. The major parameter for BISCUIT 
is the dispersion parameter (α) that allows the algorithm to sort cells into more 
clusters or less clusters, which was set to 1. The following parameters were used to 
run BISCUIT: the default setting of 20 genes per batch, the default number of 20 
iterations and 100 as the number of cells in each batch. Once complete, the final 
clusters were projected onto the t-SNE plot of Fig. 2c computed by Seurat. Cell 
cluster outputs from BISCUIT were projected onto the t-SNE data computed by 
Seurat.

Dip test. Data were normalized with standard Seurat parameters as described 
previously55. The same number of variable genes, defined by Seurat, was used 
in the continuity analysis. To test for ‘discontinuity’ in transcriptomic-based 
representation of a set of cells, the Hartigan’s dip test of multimodality was used20. 
The dip test asks whether the pairwise distances between all pairs of cells can be 
best supported by a unimodal or a multimodal distribution. The intuition behind 
this test comes from the fact that if there are two or more clear subpopulations of 
cells that cluster together with clear boundaries, then, given a high-dimensional 
representation of these cells (that is, vectors of length g consisting of gene 
expression levels for g genes), there would be one or more region(s) of low density 
in between highly dense regions in this space. These low-density regions would 
thus create a ‘dip’ in the distribution of pairwise distances between all cells in this 
space. One important parameter here is the representation of gene expression data 
used in computing the pairwise distances between cells. To support the ability of 
the dip test to identify regions of low density, we first applied a projection defined 
by minimum separation hyperplane21 to gene expression data from variable genes 
(defined by Seurat) and then applied the dip test to the distances computed on the 
projected data.

Binary classification of Il17- or Ifng-expressing cells. We trained a DNN run on 
the Keras platform (https://keras.io/). The input gene set was the 500 most variable 
genes across the entire scRNA-seq dataset of Fig. 2 (naturally leaving out Il17 and 
Ifng transcripts), and the network was trained to classify Ifng- or Il17a-expressing 
cells (randomly assigned to 80% training set, 20% test set). The data matrix was 
normalized by the mean of the expression of each gene across the 2,885 cells 
(otherwise the transcripts with highest expression levels dominate the output). 

The DNN was composed of three hidden layers with the following features: size 
of the hidden layers, 512, 128 or 64 with random weights initialization; activation 
function, sigmoid; optimizer for backward propagation, ADAM; number of 
epochs, 50; training and testing on CPU; batch size, 100. We added a decision 
function downstream with the possibility of NoCall (for non-producing cells); the 
classification as Il17-expressing was accepted if the output softmax score of the cell 
was above 0.95 (and below 0.05 for Ifng-expressing cells), otherwise the NoCall 
decision was made. We voluntarily overfitted the model to fit the distribution 
of the output softmax score with the decision function constraints. We used a 
Keras-based (version 2.2.4) neural network (https://keras.io/) on Python 2. The 
integrated gradients library was used to compute the overall contribution score 
of each gene as the mean of its contribution scores across the whole dataset. To 
test the reproducibility of the integrated gradients, we randomly split the dataset 
into two subdatasets on which we independently trained models, repeating the 
operation 100 times on each dataset and taking the mean of these 100 scores. As a 
positive control, the same architecture was used to distinguish Teff from Treg cells, 
which could be done with 98.8% (Teff) and 89.7% (Treg) accuracy on average, as 
shown below.

Accuracy, 97.58–98.05% Actual Treg Actual Teff

Prediction Treg (in ten independent runs) 1,120–1,170 42–64
Prediction Teff (in ten independent runs) 78–128 5,700–5,722

Total 1,248 5,764

Total number of cells, 7,012.

Clonotype analysis and CITE-seq. Mice were infected with Salmonella as above, 
and colon single-cell suspensions were prepared as above. Antibody staining (cell 
hashing and CITE-seq) was performed simultaneously by adding TotalSeq-C 
hashtags 1–7 (day 0, hashtag7; day 3, hashtag6; day 5, hashtag 5; day 7, hashtag 4; 
day 10, hashtag 3; day 17, hashtag 1), anti-CD14 (C0424) and anti-I-A/I-E (C0117) 
(BioLegend) to the cells at a ratio of 1:100 in RPMI with 2% FCS and incubating 
the mixture on ice for 15 min. Cells were then washed twice with RPMI, 2% 
FCS and sorted as described above before encapsulation (10x Genomics). Gene 
expression, feature and TCR V(D)J libraries were prepared using the 5′ V(D)
J version 1 kit (10x Genomics). Rearranged TCRs were identified by running 
Cell Ranger vdj 3.0, and TCR chains and N and P nucleotides per clonotype 
were determined with the help of the IMGT database (http://www.imgt.org/
IMGT_vquest/input). Repeated clonotypes were defined by shared TCRα and -β 
receptors with identical Cdr3 sequences at the nucleotide level. Cells in cycle were 
excluded from UMAP and clonotype analyses. Ifng- or Il17a-expressing cells were 
defined as cells that had reads for either transcript. Euclidean distances between 
cells expressing the same repeated TCR clonotype were measured using the dist() 
function on either the TH gene set (Supplementary Table 2) or the 1,000 most 
variable genes.

Single-cell ATAC-seq. Total CD4+ T cells were isolated from the colons of 
Salmonella-infected mice as described for scRNA-seq, except collagenase II and 
dispase was used instead of collagenase VIII. Cells (25 × 103) were sorted directly 
into 2% FCS, RPMI and subsequently spun down and reconstituted in 0.04% PBS. 
Nuclei isolation, GEM generation and library preparation were performed as 
described in the Chromium Single Cell ATAC (10x Genomics) manual (https://
support.10xgenomics.com/single-cell-atac). Libraries were sequenced on the 
Illumina NextSeq system. OCR counts were obtained by aligning reads to the 
mm10 genome using Cell Ranger ATAC software (version 1.1) (10x Genomics). 
scATAC-seq was analyzed using the Seurat–Signac pipeline (https://satijalab.org/
signac/index.html). For QC, cells with less than 5,000 peak calls and less than 
20% of reads mapped to peaks were filtered out. For the normalization of peak 
counts used to drive the UMAP representation, the RunTFIDF function was 
used to calculate the term frequency–inverse document frequency (TF–IDF). 
For dimensionality reduction, data structure was learned via latent semantic 
indexing (RunLSI function) and single value decomposition (RunSVD function). 
Contaminating non-T cells were taken out, and UMAP and cell clusters were then 
recalculated. Naive T, Treg and Teff cell clusters were identified and attributed based 
on the gene activity matrix, constructed using the FeatureMatrix function and 
the Gencode version 18 annotation; peaks that were found within the gene body 
and up to 2 kb upstream of transcription start sites (TSSs) were assigned to the 
corresponding genes.

To calculate the Tbx21 and Rorc scores shown in Fig. 5b, we counted the raw 
reads falling into 300-bp intervals centered on OCRs that were highly correlated 
with the expression of corresponding genes in the ImmGen compendium 
(according to Supplementary Tables 3f and ref. 27). For the Rorc locus, signals 
at three OCRs with TSS gene–OCR correlation scores >10 were used, and for 
the Tbx21 locus, 11 OCRs with TSS gene–OCR scores >15 were used (Fig. 5c). 
Read counts were then summed and averaged into a score per cell using the 
AddModuleScore function. Cells were assigned as Rorc+ or Tbx21+ if the average 
OCR score for these loci was greater than 0. Coverage maps were then generated 
using the CoveragePlot function, applied only to Teff cells.
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Raw bulk ATAC-seq data from TH0, TH1 and TH17 cells differentiated in vitro 
were generously provided by P. Thakore and A. Schnell (Harvard University)65. 
The Tbx21 and Rorc chromatin scores were computed as above from read counts 
(normalized to the total read number for each biological replicate).

TF deviation and variability scores were calculated using the chromVAR 
package (version 1.8)28 with motifs from the JASPAR 2018 database. The filtered 
Teff-only scATAC-seq count matrix was used as input, with peaks overlapping 
motifs determined using the motifmatchr matchMotifs function. The chromVAR 
computeDeviations function was used to calculate the bias-corrected deviation 
scores for each TF motif. Briefly, this method computes the difference between 
observed fragments within peaks containing a given motif and the total expected 
number of fragments using the average of all cells. These ‘raw deviation’ scores 
are then normalized for technical biases using a set of background peaks matched 
for GC content and accessibility to yield the ‘bias-corrected deviation scores’. 
Variability of TF motifs across the Teff data was calculated using the chromVAR 
computeVariability function.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data reported in this paper were deposited in the Gene Expression Omnibus 
(GEO) database under accession no. GSE160055).
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Extended Data Fig. 1 | scRNAseq of Teff under normal conditions. a, Quality control plots (per-cell number of unique reads vs number of transcripts 
detected) for the scRNAseq data from total colonic CD4+ T cells (data from Fig. 1a). b, Same plots as (a), for CD4+ QC of scRNAseq data from total 
colonic CD4+ T cells of germ-free and SPF mice. c, SMART-SEQ2 single-cell data from colon T memory cells (from ref. 16). Aggregate expression of 
Th-specific genesets (defined as for Fig. 1) are overlayed on the tSNE.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | scRNAseq of Teff under infectious conditions. a, tSNE representation of all CD4+ T cells in the scRNAseq data from the parallel 
infection experiment of Fig. 2. Left panel: each color represents cells from a different infection condition. Tregs, naive Tconvs, cycling cells and Teffs are 
circled; right panel: expression of key genes. b, UMAP representation of Teff cells from the same experiment, colored by condition; Right panels: Overlay 
of TH genesets (per Fig. 2). c, Data from the same parallel-infection experiment as Fig. 2c and displayed using the same tSNE coordinates, highlighted with 
aggregate expression of TH signature genes from ref. 19. d, Expression of key cytokines and transcription factors in the same scRNAseq data as Fig. 2c.  
e, Independent parallel infection experiment. Samples were not hash-tagged, and processed in parallel encapsulations, and cell data were aligned by 
canonical correlation analysis (CCA) for tSNE representation, color-coded by sample. Right: expression of Th-specific genesets, defined as for Fig. 2c.

NATuRE IMMuNoLoGy | www.nature.com/natureimmunology

http://www.nature.com/natureimmunology


ArticlesNATURE IMMUNOLOGy

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Different clustering approaches and signatures do not parse out the data into TH subsets. a, KNN clusters shown on hash-tagged 
tSNE. Percentages of cells corresponding to each signature in each KNN cluster are shown in the table. b, Biscuit clusters shown on hash-tagged tSNE. 
Percentages of cells corresponding to each signature in each Biscuit cluster are shown in the table. c, Backspin clusters shown on hash-tagged tSNE. 
Percentages of cells corresponding to each signature in each Backspin cluster are shown in the table. d, Overlay of pathogenic TH17 signatures from  
refs. 22,23. Left panel: all Teff; right panel: only Il17a+ Teff. e, Overlay of Citrobacter TH17 signature from ref. 24 on the tSNE plot.
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Extended Data Fig. 4 | Neural Network prediction of IFN-γ and Il17-producing phenotypes. a, A Keras neural network was trained to use as input the 
expression of 500 most variable genes in Teff single-cell RNAseq data to predict Ifng or Il17a expression in each cell. Loss as a function of training epochs 
plotted here. Note the overfitting beyond 10 epochs (representative of >50 independent training runs with random 80/20 training/test). b, Accuracy of 
DNN-predicted cytokine expression by individual Teff cells, relative to their actual expression in the test scRNAseq data (non-expressing cells were not 
included as input, since there is uncertainty as to their real nature given drop-out frequencies in scRNAseq data). Numbers shown represent the range 
observed in 10 independent training runs (with different training/test sets). c, Contribution of each transcript to the prediction of Il17a or Ifng expression, 
as score in the Integrated Gradients, comparing the model learned in two independent runs. A positive score indicates influence on predicting Il17a 
expression, a negative score influence in predicting Ifng expression.
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Extended Data Fig. 5 | Th-associated genes are not the main drivers of Teff heterogeneity. a, Distribution of Top 6 PCs of Teffs from all hash-tagged 
samples, with cell cycle genes regressed out. Genes that are Th-associated are highlighted. b, Co-expression of key cytokines across all samples. Mean 
Pearson gene:gene correlation of cytokine genes across all samples. Only significantly correlated cytokines are colored (p < 0.05, χ² test). Significant P 
values: Il4/Il13 6.3 × 10−3, Il4/Il5 1.8 × 10−98, Il5/Il13 5.5 × 10−129, Il17a/Il17f 1.3 × 10−4. c, Coregulated gene modules in Teff single-cells. Gene:gene correlation 
between 588 most variable genes was calculated independently within each condition/infection of the single-cell datasets, then averaged between 
conditions. 16 gene modules were determined by Affinity Propagation within this matrix, annotated at right. d, Overlay of average expression of these gene 
modules on Teff tSNE (per 2c) with barplots showing genes with highest mean correlation (full list in Supplementary Table 3).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | unique clonotypes are not restricted to a TH type and do not diversify over time. a, Quantification of flow cytometry data on 
cells from mouse LP at different timepoints of infection; Left: Proportion of CD4+ T cells within total CD45+; Middle: Proportion of Teff (CD44hi Foxp3–) 
within total CD4+ T; Right: Proportion of IFN-γ+ cells within total CD4 T. b, Cell numbers per scRNAseq clustering by day post infection. Treg clusters were 
identified as Foxp3+, naive cluster as Foxp3− Ccr7+ and Teff clusters as Foxp3− Cd44+. c, Left: UMAP as in 5a, showing two groups of cell clusters: cells 
taken from mice after day 10 are colored in red, and cells taken prior to day 7 are colored in blue. Right: DEG analysis on top 20 differentially expressed 
genes between the two cluster groups. Asterisks represent genes that overlap with genes that are higher in Teff after Salmonella infection in Fig. 3a.  
d, Bar graph representing proportions of cells belonging to singlet clones (clones that appear only once) or expanded clones (clones that appear more than 
once) in each of the clusters defined in S6b, grouped by day post infection. e, Median Euclidean distances between cells within the same clonotype across 
the top 10 clonotypes for each timepoint. Euclidean distance was calculated based on the top 1000 variable genes. Each color dot represents a unique 
clonotype, and the size of the dot signifies the number of cells within each clonotype.
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Extended Data Fig. 7 | The unexpected MyT subset. a, Flow cytometric analysis (gated CD4+TCRβ+FOXP3
-

 Teff) cells from colonic LP of Salmonella 
infected mice. b, Volcano plot of bulk RNAseq from colonic Teff sorted as in C (LP of Salmonella infected mice). Genes highlighted in red belong to the 
myeloid genes listed in B.
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