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Abstract

The differentiation of hematopoietic stem cells into immune cells has been extensively studied in 

mammals, but the transcriptional circuitry controlling it is still only partially understood. Here, the 

Immunological Genome Project gene expression profiles across mouse immune lineages allowed 

us to systematically analyze these circuits. Using a computational algorithm called Ontogenet, we 

uncovered differentiation-stage specific regulators of mouse hematopoiesis, identifying many 

known hematopoietic regulators, and 175 new candidate regulators, their target genes, and the cell 
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types in which they act. Among the novel regulators, we highlight the role of ETV5 in γδT cells 

differntiation. Since the transcriptional program of human and mouse cells is highly conserved1, it 

is likely that many lessons learned from the mouse model apply to humans.

Introduction

The Immunological Genome Project (ImmGen) is a consortium of immunologists and 

computational biologists who aim, using shared and rigorously controlled data generation 

pipelines, to exhaustively chart gene expression profiles and their underlying regulatory 

networks in the mouse immune system2. In this context, we provide the first comprehensive 

analysis of the ImmGen compendium, using a novel computational algorithm to reconstruct 

a modular model of the regulatory program of mouse hematopoiesis.

Understanding the regulatory mechanisms underlying the differentiation of immune cells 

has important implications for the study of development and for understanding the basis of 

human immune disorders and hematologic malignancies. Most studies of hematopoiesis 

view differentiation as a process controlled by relatively few ‘master’ transcription factors 

(TFs), expressed in specific lineages that act to set and reinforce distinct cell states3. 

However, a recent analysis of gene expression in 38 cell types in human hematopoiesis4 

suggested a more complex organization involving a larger number of transcription factors 

that control combinations of modules of co-expressed genes and are arranged in densely 

interconnected circuits. The human study was restricted, however, to human cells that could 

be obtained in sufficient quantities from peripheral or cord blood and thus could not access 

many immune cell populations. The 246 mouse immune cell types in the 816 arrays of the 

ImmGen compendium offer an unprecedented opportunity to study the regulatory 

organization of hematopoiesis within the context of a rich and diverse lineage tree. Since the 

transcriptional program of human and mouse cells is highly conserved1, it is likely that 

many lessons learned from the mouse model will be applicable in humans.

Two key approaches to identify regulatory networks5 are physical models based on the 

association of a TF or a cis-regulatory element with a target’s promoter (e.g., from ChIP-

Seq), and observational models that infer regulation from a statistical dependence between 

the level or activity of a TF (at the protein or mRNA level) and that of its presumed target. 

In both cases, analyzing the relationship between a putative regulator and a module of co-

regulated targets enhances robustness and biological interpretability6-7. Physical data 

provides direct evidence for biochemical interactions but is not necessarily functional8 and 

is challenging9 to collect, whereas mRNA profiles are highly accessible but provide only 

correlative evidence. Since physical and observational models are complementary, using 

both4 can enhance our confidence5-7 and expand our scope of discovery.

Analyzing cells organized in a known lineage, as in hematopoiesis, offers unique 

opportunities that have not been leveraged before. In particular, previous models4 did not 

explicitly consider the fact that more closely related cells (according to the known lineage 

tree) likely share many of their regulatory mechanisms, and that regulatory relations that 

exist in one sub-lineage may not be active in another. Incorporating this information may 

help identify true regulators of hematopoiesis .
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Here, we use these insights to develop a novel computational method, Ontogenet, and apply 

it to the ImmGen compendium to build an observational model associating 578 candidate 

regulators with modules of co-expressed genes. Modules were defined at two levels of 

resolution – with 81 larger coarse-grained modules, some of which were further refined into 

smaller modules with more coherent expression, resulting in 334 fine-grained modules The 

model identifies many of the known hematopoietic regulators, was supported using a 

complementary physical model, and proposed dozens of new candidate regulators. Our 

model provides a rich resource of testable hypotheses for experimental studies, and the 

Ontogenet algorithm can be used to decipher regulation within the context of any cell 

lineage.

Results

A transcriptional compendium of mouse immune cells

The ImmGen consortium dataset2 (the April 2012 release) consists of 816 expression 

profiles from 246 mouse immune cell types (Fig. 1, Supplementary Table 1). The cell types 

span all major hematopoietic lineages, including stem and progenitor cells (S&P), 

granulocytes, monocytes, macrophages, dendritic cells (DC), natural killer (NK) cells, B 

cells, and T cells. T cells include many αβ T cells types, regulatory T cells (Tregs), natural 

killer T cells (NKT) and γδ T cells. The ‘same’ cell type was often sampled from several 

tissues, such as bone marrow, thymus, and spleen.

Similarities in global profiles trace the cell ontogeny

Correlations in global profiles between samples are largely consistent with the known 

lineage tree (Fig. 2). In general, the closer two cell populations are in the lineage tree, the 

more similar their expression profiles (Pearson r=−0.71, Supplementary Fig. 1). Within 

myeloid cells, profiles are overall similar, with granulocytes the least variable, dendritic 

cells the most variable (consistent with their sampling from diverse tissues and their known 

inherent diversity10), and all myeloid cells weakly similar to stromal cells. Conversely, 

lymphocytes show larger differences between lineages. NK cells, while tightly correlated, 

do show weaker similarity to T cells, especially CD8+ T cells and natural killer T cells. T 

cells are very heterogeneous, partly reflecting the finer sampling in this lineage. Stem cells 

are most similar to early myeloid and lymphoid progenitors (S&P group, Fig. 2), followed 

by pre-B and pre-T cells, consistent with a gradual loss of differentiation potential. As a 

resource for studying each lineage, we used one way ANOVA to define characteristic 

signatures of over- and under-expressed genes for each of the main eleven lineages, 

compared to all other lineages (Supplementary Table 2).

Coarse and fine-grained expression modules in hematopoiesis

To characterize the key patterns of gene regulation, we next defined modules of co-

expressed genes, at two levels of granularity (Supplementary Fig. 2a, b). We first 

constructed 81 coarse-grained modules (C1-C81, Supplementary Fig. 2c-h, Supplementary 

Table 3), and then further identified for each coarse-grained module a set of nested fine 

modules (Supplementary Fig. 2a), resulting in 334 fine modules spanning 7,965 genes (F1-

F334, Supplementary Table 4). Coarse modules help us capture the mechanisms that co-
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regulate a larger set of genes in one lineage, whereas fine modules may help identify distinct 

regulatory mechanism controlling only a smaller subset of these genes in the other 

lineage(s). Many of the modules are enriched for coherent functional annotations, cis-

regulatory elements (Supplementary Table 5), and binding of transcription factors 

(Supplementary Table 6, Supplementary Note 1), including with binding sites for factors 

known to act as regulators at the lineage(s) in which the module’s genes are expressed 

(Supplementary Note 2). All modules and their associated enrichments can be searched, 

browsed and downloaded in the ImmGen portal (http://www.immgen.org/ModsRegs/

modules.html).

Most coarse-grained modules (48 of 81 modules, 4,478 of 7,965 genes) show either lineage-

specific induction (Supplementary Fig. 2c and 3) or pan-differentiation regulation 

(Supplementary Fig. 2d, e, 4 and 5). In addition, 6 modules are ‘mixed use’ across lineages 

(Supplementary Fig. 2f and 6), 8 are stromal specific (Supplementary Fig. 2g), and 19 

display expression patterns that do not fall into these categories (Supplementary Fig. 2h and 

7). Lineage-specific repression is rare (only in C53 – B cells, C17 – stromal cells).

Ontogenet: Reconstructing lineage-sensitive regulation

We next devised a new algorithm, Ontogenet, to decipher the regulatory circuits that drive 

hematopoietic cell differentiation. Ontogenet aims to fulfill several biological 

considerations: criterion 1, the expression of each module of genes is determined by a 

combination of activating and repressing transcription factors; criterion 2, the activity level 

of these factors may change in different cell types; for example, a factor A may activate a 

module in one lineage but not in another, even if A is expressed in both lineages; criterion 3, 

the identity and activity of the factors regulating a module are more similar between cells 

that are close to each other in the lineage tree (e.g., from the same sub-lineage) than between 

‘distant’ cells (e.g., from two different sub-lineages), in accordance with the increased 

similarity in expression profiles between closer cell types (Supplementary Fig. 1); and 

criterion 4, lineage master regulators (e.g., GATA3 for T cells) are active across the sub-

lineages, but the sub-types can also have additional more specific regulators (e.g., FOXP3 

for Tregs). The former should be captured as shared regulators of a coarse module and its 

nested fine modules, whereas the latter only regulate particular fine modules.

Ontogenet receives as input gene expression module, the lineage tree, and the expression 

profiles of a pre-designated set of ‘candidate regulators’ (transcription factors, chromatin 

regulators, etc.). It then associates each module with a combination of regulators (criterion 1 

above), where each regulator is assigned an ‘activity weight’ in each cell type indicating its 

activity as a regulator for that module in that cell (criterion 2 above). The regulator activity 

is at the protein level, but is inferred solely from transcript levels. Following the previously 

published Lirnet6, a method for regulatory network reconstruction, the activity-weighted 

expression of the regulators is combined in a linear model to generate a prediction of the 

modules’ gene expression in each cell type (Fig. 3). In this model, the expression of the 

module’s genes in a given cell type is approximated by the linear sum of the regulators’ 

expression in that cell type multiplied by each regulator’s activity weight in that cell type. 

As a result, the model makes predictions such as: “In pre B cells, Module 1 is activated by 
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transcription factors A and B and repressed by factor C, whereas in B cells, factors A and C 

are no longer active (even if the factors are expressed), and Module 1 is activated by B and 

D.”. Our model assumes that all the genes in the same module are regulated in the same 

way. This is essential for statistical robustness, although it comes at a cost of missing some 

gene-specific expression patterns. The fine modules let us examine subtler expression 

patterns shared by fewer genes, but are more susceptible to noise.

While Ontogenet reconstructs a potentially different regulatory program for each cell type, 

as reflected by cell-specific activity weights for each regulator, it is geared toward 

maintaining the same activity level across consecutive stages in differentiation (criterion 3). 

This is achieved by penalizing changes in the activity weights of the regulatory program 

between a cell type and its progenitor. The fine-grained modules derived from a coarse-

grained module ‘inherit’ the same regulators and activity weights that were inferred for their 

coarse-grained module (while possibly gaining additional regulators, criterion 4). 

Altogether, we use an optimization approach that constructs an ensemble of regulatory 

programs that try to achieve several goals: each regulatory program explains as much of the 

gene expression variance in the module as possible; the regulatory programs remain as 

simple as possible; regulatory programs are consistent across related cell types in the 

ontogeny, and fine modules have similar regulators to those of the coarse modules to which 

they belong.

Notably, the approach we and others previously used to identify combinations of regulators 

(e.g., linear regression regularized using the Elastic Net penalty6,11) assumed that the 

regulatory activity (and hence activity weight) is the same across all cell types. Thus, if a 

regulator was expressed at the same level in two different cells, it was deemed active to the 

same extent. This violates the known context-specificity of regulation in complex lineages. 

Conversely, allowing the algorithm to construct a separate regulatory program for each cell 

type independently is impractical and also ignores the expected similarity in gene regulation 

between related cell types within the lineage. Ontogenet solves this problem by leveraging 

the lineage tree when inferring the regulatory connections and their activity, such that the 

module’s genes’ are more likely to be regulated in a similar way in related cell types.

Ontogenet regulatory model for mouse hematopoiesis

We applied Ontogenet to the 81 coarse-grained and 334 fine modules, a lineage tree 

consisting of 195 cell types, and 580 candidate regulators. The Ontogenet model identified 

1,417 regulatory relations (1091 activating, 317 repressing, nine mixed) between 81 coarse-

grained modules and 480 unique regulators (e.g., Fig. 4, Supplementary Fig. 8, 

Supplementary Table 5 and http://www.immgen.org/ModsRegs/modules.html). On average, 

there were 17 regulators per coarse-grained module, and three coarse-grained modules per 

regulator. As determined by cross-validation, Ontogenet constructs regulatory programs that 

are strictly better in predicting new and previously unseen expression data than those 

obtained by Elastic Net6, a method that does not use the tree and has fixed activity weights 

(Supplementary Fig. 9, Supplementary Note 3).

In most cases (59%), a regulator’s activity weights vary between different cell types (‘high 

changing’), reflecting context-specific regulation (Supplementary Fig. 10). When we prune 
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regulatory interactions whose maximal effect (defined as the product of activity weight and 

expression) is low, we obtain a sparser network, in which pan-differentiation and lineage 

specific modules are mostly controlled by distinct regulators (Fig. 5), whereas mixed-use 

modules share regulators with modules in the other classes.

The regulatory model associating 334 fine modules and 554 regulators in 6,151 interactions 

had qualitatively similar patterns, except for having more regulators with mixed behavior 

(high changing on some modules and low changing on others), probably reflecting both the 

increased number of interactions, and the finer regulatory program (Supplementary Fig. 10, 

Supplementary Table 7, http://www.immgen.org/ModsRegs/modules.html). This rich 

regulatory model for mouse immune system differentiation identified many known 

regulatory interactions, and suggests new regulatory interactions in specific immune 

contexts.

Ontogenet predicts known hematopoietic regulatory interactions

Many of the regulatory interactions identified by Ontogenet were previously known, 

supporting the accuracy of our model. For example, within individual regulators, PU.1 

(encoded by Sfpi1) was selected as a regulator of the myeloid and B cells module C25 (and 

13 of its 15 fine modules); C/EBPα (encoded by Cebpa) regulates the myeloid modules 

C24, C30 and C74, the macrophage module C29, and many myeloid fine modules; C/EBPβ 

(encoded by Cebpb) regulates myeloid specific modules C25 and C30, and many myeloid 

fine modules; MAFB regulates the macrophage specific modules C29, F128 and F131; 

STAT1 regulates the interferon response module C52; TBX21 (T-bet) regulates the NK 

module C19 and NKT module F288, and CIITA regulates the antigen presenting cells 

module F136.

Furthermore, the combination of regulators associated with a single module is also 

consistent with known regulatory relations. For example, the B cell module C33 is regulated 

by the known B cell regulators PAX5, EBF1, POU2AF1 and SPIB (Fig. 4); the T cell 

module C18 (Supplementary Fig. 8) is regulated by the known T cell regulators BCL11B, 

GATA3, LEF1, TOX and TCF7; the γδ T cells module C56 is regulated by the known γδ T 

cells regulators ZBTB16 (PLZF), SOX13 and ID3, all also involved in NKT development 

and function; the more γδ specific fine module F289 is regulated by all of these as well as 

ETV5, not previously associated with γδ T cells (discussed below); the NKT module F188 is 

regulated by GATA3, TBX21 and ZBTB16, and fine modules F150 and F152, in which 

CD8+ DC cells expression is higher than CD4+ DCs expression, are regulated by IRF8 (but 

not IRF4), consistent with the known role of subset-selective expression IRF4 and IRF8 in 

DC commitment12.

Ontogenet’s predictions are also supported by their significant overlap with those based on 

enrichment of cis-regulatory motifs and ChIP-based binding profiles in the modules 

(Supplementary Tables 5 and 6), supporting a direct physical interaction between a regulator 

and the genes in the module with which it was associated by Ontogenet (Supplementary 

Table 8). For example, 27 of the associations between a regulator and a coarse module are 

supported by cis-regulatory motif enrichment (p-value = 2.6×10−5, hyper geometric test for 

two groups; p-value < 10−5 permutation test), for example, the GATA2 motif in HSC 
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module C40 and the SFPI1 (PU.1) motif in myeloid module C25. ChIP profiles support 21 

regulator-coarse module associations (p-value = 2.2×10−5, hyper geometric test for two 

groups; p-value < 10−5 permutation test), such as the binding of C/EBPα and C/EBPβ in the 

myeloid module C24 and the binding of EBF1 in the B cell module C33.

While these overlaps are statistically significant, they nevertheless also indicate that most 

regulatory interactions are not supported by enriched known cis-regulatory motifs or 

available TF binding data, and vice versa. There are three reasons for this. First, scoring for 

binding sites and their enrichment is a process that is highly prone to false negatives; this is 

particularly likely to occur in much smaller fine modules. Second, the majority of regulators 

chosen by Ontogenet do not have a characterized binding motif (60% of regulators, 334 of 

554) nor ChIP binding data in any cell type (90% of regulators, 497 of 554). Such regulators 

can only be nominated by an expression-based method, such as Ontogenet, and should not 

be considered as false positives of our method. Finally, in many cases when we do find an 

enrichment in a cis-regulatory element or binding profile for a TF A in module B (300/551 

cis-regulatory interactions (54%); 52 of 90 ChIP based interactions (57%)), the TF (A) and 

its target module (B) show little or no correlation in expression (absolute Pearson r < 0.5). In 

some cases, this will be due to a factor that is not itself transcriptionally regulated (a real 

‘false negative’ of Ontogenet), but in many others the factor likely controls these targets in 

another cell type not measured in our study (and hence is not in fact a false negative of 

Ontogenet).

A few of the known regulators of immune system differentiation13 were not identified by the 

model, due to various reasons. TAL1 and BMI1 did not pass the initial filtering criteria, 

being only expressed in HSCs, and hence were not provided as input. GFI1 was not assigned 

as a regulator in stem and progenitor cells or granulocytes, because its expression is highest 

in pre-T, and only sparse and intermediate in stem and progenitor cells and granulocytes. 

E2A (encoded by Tcf3) was not identified as a T cell regulator, perhaps because it is not 

specifically expressed in T cells, and is in general lowly expressed, possibly due to a bad 

probeset. XBP1 was not identified as a B cell regulator, because it has relatively low 

expression in B cells in our arrays, and is more highly expressed in myeloid cells.

The re-discovery of known regulators lends support to the many novel regulatory 

interactions in the model. Of the 475 regulators that Ontogenet associated with lineage 

specific modules or pan-differentiation modules, at least 175 (37%) are completely novel in 

this context. Among those, for example, KLF12 is predicted as a regulator of the NK 

module C19, but was not previously associated with NK cell regulation. GATA6 is 

predicted as a regulator of the macrophage specific modules C31, C50 and C58, but was not 

previously associated with macrophages. This is in agreement with the significantly reduced 

number of granulocyte-macrophage colonies from embryoid bodies of GATA6 knock out 

mice14. Finally, ETV5 is predicted by the model to be a regulator of the γδ T cell modules 

F287 and F289, a novel role discussed below.

Context specific regulation underlies mixed-use modules

Context specific regulation, where the same set of genes are regulated by one set of 

regulators in the context of one lineage, and by another set of regulators in the context of 
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another lineage, was previously reported in selected cases, for example Rag2 regulation by 

GATA3 in T cells and PAX5 in B cells15. Ontogenet’s ability to recover different regulatory 

programs for the same module in different parts of the lineage tree can help decipher the 

regulatory mechanisms underlying ‘mixed use’ modules, expressed in more than one 

lineage. For example, module C70 is induced both in Tregs and some myeloid populations. 

Each activation event is associated with different regulators in our model: FOXP3 in CD4+ 

T cells (itself a member of the module, although not expressed in the DC subsets) and 

PIAS3, HSF2 and INSM1 in DCs. In another example, fine-grained module F300 is 

independently induced in both mature B and T cells. While some of its regulators are 

themselves ‘mixed-use’ in both lineages, others are B cell specific (ZFP318, RFX5 and 

CIITA) or T cell specific (e.g., EGR2).

Regulatory recruitment and rewiring during differentiation

The majority of regulatory relations identified by Ontogenet are dynamic, as reflected by the 

change in their associated activity weights during differentiation. This change provides a 

bird’s eye view of the ‘recruitment’ and ‘disposal’ of regulators (Fig. 6a). To characterize 

this, for each cell type, we identified all the regulatory interactions whose activity weight 

changes (either increases or decreases) between that cell type and its immediate progenitor 

(Supplementary Table 9), and the unique regulators and modules involved in those 

interactions. In this way, we identified modules and regulators that are recruited and 

strengthened (activity weight increases compared to progenitor) or disposed and weakened 

(activity weight decreases compared to progenitor) at each differentiation step. Notably, 

recruitment (or disposal) of regulators does not necessarily mean that the regulators’ 

expression changes, but that the model suggests that their regulatory activity has changed for 

this set of targets. For example, during the differentiation of CD8+ T cells from the CLP, 61 

regulatory interactions are recruited, involving 34 modules and 49 regulators, only 15 of 

which were previously associated with T cell differentiation. In particular, in the 

differentiation step from DN4 to ISP T cells, Ontogenet independently identified the 

previously reported involvement of MXD4, BATF and NFIL3, as well as newly identified 

RCBTB1, PIAS3 and ITGB3BP (Fig. 6b, c). In another example, during the differentiation 

step leading to NK cells, the NK module C19 was assigned the known NK regulators 

EOMES, and TBX21 as activators. Both EOMES and TBX21 were also recruited as 

repressors over this differentiation step in other modules. The differentiation step leading to 

Treg recruits the Treg module C70, and its known regulators FOXP3, as well as CREM, 

which was previously proposed as a Treg cell regulator16. Notably, because HSCs have no 

parent in our model, regulators active in HSCs will only be noted when no longer used at 

later points (e.g., HOXA7 and HOXA9 were no longer used as activators at the MLP stage). 

The first recruited activator is MEIS1, recruited in module C42 on the differentiation step 

leading to the MLP, and later no longer used in T cells, in agreement with the previously 

reported methylation and silencing of MEIS1 during differentiation towards T cells17.

Ranking of lineage activators and repressors

The activity weights assigned for each regulator at each differentiation point allowed us to 

identify and rank regulators as lineage activators and repressors based on the entire model 

(Fig. 6d, Supplementary Table 10). In this way we correctly captured many known 
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regulators of each lineage among the top ranked activators. For example, our model 

associates MYC, MYCN, GATA2, and MEIS1 with S&P cells, BCL11B, TCF7 and 

GATA3 with αβ-T cells; POU2AF1, PAX5, EBF1 and SPIB with B cells; EOMES, TBX21 

and SMAD3 with NK cells and GATA3 and ZBTB16 with NKT cells. In addition, the 

model makes many predictions of lineage regulators that were not previously associated 

with those lineages. For example: in S&P cells: HLF; in granulocytes: DACH1, recently 

reported to regulate cell cycle progression in myeloid cells18, BACH1 and NFE2; in 

macrophages: CREG1; in DCs: ATF6, ETV3, SKIL, NR4A2 and NR4A3, previously shown 

to be induced in viral infected DCs19-20; in monocytes: POU2F2 (Oct2), previously reported 

to be up-regulated with macrophage differentiation21, and KLF13, a regulator of B and T 

cells22 that has a higher expression in monocytes; in B cells: ZFP318; and in NKs: ELF4 

(Gm9907), previously shown to control the proliferation and homing of CD8+ T cells23. 

Notably, while this pan-model analysis is useful, it can de-emphasize the contribution of 

important regulators captured by the model in a more nuanced way, for example as acting 

only during a limited window of differentiation, but not present in the mature stage. Those 

are captured by the recruitment and disposal analysis shown above (Fig. 6).

Finally, by counting the number of changes in activity weights that occur (across all 

regulators) at each differentiation step (edge) we can identify those differentiation points 

where regulation is rewired most substantially (Supplementary Fig. 11). For example, 19 

regulators are recruited to coarse modules (activity weight increases from zero) at ETP, and 

28 at Tgd.th, including the known T cell regulator GATA3, and the known γδ T regulators 

ID3 and SOX13 (Supplementary Fig. 11a). At CLP, four regulators are disposed of (activity 

weight reduces to zero) by coarse modules, including the HSC regulators HOXA7, HOXA9 

and HOXB3. Eighteen regulators are disposed at preT.DN2, including GATA1, MYC and 

MYCN (Supplementary Fig. 11b). Overall, rewiring is more prominent at higher levels in 

the lineage than at lower (more differentiated) ones, though this may be partly due to the 

reduced power to detect changes at cell types that have no other cells differentiating from 

them (terminally differentiated, also called leaves in the tree). The individual differentiation 

steps that carry the largest number of activity weight changes are found in the small intestine 

DCs, thymus γδ T cells, liver/lung DCs and preT.DN2.th, suggesting substantial regulatory 

rewiring in these cells, possibly due to tissue-specific effects. The regulatory model for fine 

modules identifies a larger number of regulatory changes (82% of differentiation steps 

change activity weight, compared to 65% for the coarse-grained module model), in 

particular in differentiation steps leading to ‘leaves’ (terminally differentiated cells; 67% vs. 

48%). Thus, the fine-grained modules help uncover more cell type-specific regulation.

ETV5 is a novel regulator of γδ T cell differentiation

To test one of the model’s predictions in vivo, we centered on regulatory activators of 

lineage-specific modules with previously no known function in that lineage. A practical 

criterion was that the gene can be manipulated in vivo in a cell type-restricted manner. We 

focused on the Ets family member ETV5’s predicted role as a regulator of γδ T cell 

differentiation in modules F287 and F289 since its expression is highly restricted to the γδ T 

cell lineage. Although the model assigns several regulators to these modules, only two – 

SOX13 and ETV5 – are specific to the γδ T cell lineage. Both are expressed in distinct 
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thymic precursors, raising the possibility that they are among the earliest determinants of the 

lineage. SOX13 is a known regulator of γδ T cells, but ETV5 has not been implicated in γδ 

T cell development.

To test the regulatory role of ETV5 in γδ T cells, we assessed γδ T cell development and 

function in mice lacking ETV5 specifically in T cells (CD2p-CreTg+Etv5fl/fl). As γδ TCR+ 

thymocytes transit from immature CD24 (HSA)hi cells to mature CD24lo cells, they acquire 

effector functions24. ETV5 is expressed at the highest level in γδ thymocytes expressing the 

Vγ2 TCR chain that constitute nearly half of all γδ T cells in postnatal mice. The majority of 

Vγ2+ cells differentiate into IL-17-producing γδ effector cells in the thymus24. Thus, one 

prediction of the model was that intrathymic IL-17-producing γδ effector cell development 

would be particularly impaired in the absence of ETV5. In the T cell specific ETV5 

conditional knockout (CKO) mice the overall number of γδ T cells generated is comparable 

to control mice (Fig. 7a). However, there is a specific loss of mature Vγ2+ thymocytes (Fig. 

7b, top). This may be due to inefficient activation, as indicated by the decreased expression 

of CD44, the nominal marker of lymphocyte activation, on Vγ2+ thymocytes, and a 

corresponding increase in CD62L expression, a marker of a naive state (Fig. 7b, bottom). 

Moreover, the residual mature thymocytes are impaired in the generation of IL-17-

producing γδ effector cells (Fig. 7c). Mature Vγ2+ thymocytes from CKO mice have 

decreased expression of the transcription factor RORγt that induces Il17 transcription, and 

both thymic and peripheral γδ T cells are impaired in the generation of CCR6+CD27−IL-17-

producing γδ effector cells. These results support the prediction of our model and 

demonstrate that Etv5 is essential for proper intrathymic activation and maturation of the 

IL-17-producing γδ effector cell subset.

Studying the Ontogenet model on the ImmGen portal

To facilitate exploration and testing of other predictions of our model, we provide the full 

set of modules and regulatory model as part of the ImmGen portal, with relevant tools for 

searching, browsing and visually inspecting the results. Specifically, the ‘Modules and 

Regulators’ data browser on the ImmGen portal (http://www.immgen.org/ModsRegs/

modules.html) is the gateway to the Ontogenet regulatory model for ImmGen. It allows the 

user to browse coarse-grained or fine-grained modules by their number, pattern of 

expression, a gene they contain, a regulator that is predicted to regulate them or the cell type 

in which they are induced. For each module we present the expression of its genes and 

predicted regulators (each as a heatmap), the activity weights of each regulator in each cell, 

and the module’s mean expression projected on the lineage tree (as in Fig. 4a-d). The 

module page also links to a list of the genes in the module, the regulators that are members 

of the module, the regulators predicted to regulate the module, the regulators suggested by 

enrichment of cis motifs and binding events of the module genes, and functional 

enrichments of the module. Finally, we provide links to download a table with the 

assignment of all genes to coarse and fine modules, the regulatory program of all modules, 

and the Ontogenet code.

Jojic et al. Page 10

Nat Immunol. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.immgen.org/ModsRegs/modules.html
http://www.immgen.org/ModsRegs/modules.html


Discussion

The ImmGen Consortium dataset provides the most detailed and comprehensive view of the 

transcriptional behavior of any mammalian immune system, and arguably of any 

developmental cell differentiation process. We used these data to analyze the regulatory 

circuits underlying these processes, from global profiles, to modules, to the transcription 

factors that control them. The unique features of our novel algorithm, Ontogenet, allow us to 

uncover regulatory programs active at specific differentiation stages, and to follow them as 

they unfold and rewire.

Our analysis automatically re-discovers many of the known regulators and their correct 

function, suggests novel roles for at least 175 additional regulators, not previously 

associated with hematopoiesis, and identifies points in the lineage where regulators are 

recruited to control a specific gene program or lose their regulatory role. Our ability to 

automatically rediscover many known regulators at the appropriate developmental stage, and 

the significant correspondence between the predicted regulators, known functions, and cis-

regulatory and ChIP-Seq enrichments supports the likely quality of our novel predictions. 

Among those, we experimentally test and validate a novel role for Etv5 in the differentiation 

of γδ T effector subset. On-going studies indicate that Etv5 regulates IL-17-producing γδ 

effector cell differentiation by selectively controlling the expression of genes in the F289 γδ 

lineage-specific module.

Ontogenet’s rich model allows us both to predict the specific biological context at which 

regulation occurs, to generalize broad roles for regulators, and to identify global principles 

of the regulatory program. On the one hand, the ability to identify regulators that act only 

during specific windows helps detect “early” programming TFs, whose expression is shut 

off when cells transit to the mature stage. On the other hand, integrating across the model’s 

predictions in an entire lineage helps uncover TFs important for the maintenance of lineage 

identity or function, such as those that directly regulate the expression of effector molecules. 

Finally, generalizing across multiple regulators, we can identify those points at which 

regulatory control rewires most substantially and the regulators controlling this rewiring.

As in all expression-based methods to predict regulation, Ontogenet cannot directly 

distinguish causal directionality. To avoid arbitrary resolution of this ambiguity, Ontogenet 

allows several regulators with similar expression profiles to be assigned together as 

regulators of a module. The dense interconnected circuits and extensive auto-regulation in 

other mammalian circuits controlling cell states4, 25 suggests that these are likely to have 

functional roles, although some may be ‘false positives’. Conversely, the activation of other 

functional regulators may not be reflected at their expression levels, and some may have 

been filtered by our stringent criteria (e.g., Tal1, a known HSC regulator). These may be 

captured by our complementary analysis of enrichment of modules in cis-regulatory motifs 

and binding of regulators. Another challenge is posed by genes with very unique expression 

profiles that are assigned to modules with similar but distinct expression profiles (e. g., Rag1 

and Rag2 in coarse module 5). The inferred regulatory program is unlikely to hold for those 

genes.
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A similar study of human hematopoiesis4 suggested substantial mixed-use of modules 

between lineages, whereas the mouse compendium suggests that most modules are lineage 

specific. As we show in a companion manuscript1, the global profiles, lineage specific 

signatures, and gene co-expression patterns are otherwise broadly conserved between human 

and mouse. One possible reason for the lesser extent of ‘mixed-use’ in the mouse program is 

that while the mouse dataset contains many more cell types, it does not include erythrocytes, 

megakayocytes, basophils and eosinophils, where many of the ‘mixed-use’ patterns were 

observed in humans4. Notably, many regulators are shared across lineages. In particular, 

some regulators are only active in one lineage at some modules, but are shared between 

lineages at other modules. For example, ATF6 is an activator in all lineages in the myeloid 

modules C25, C45 and C49, but is a T cell specific repressor in the T cell precursor module 

C57, and a T cell specific activator in the B cell module C71.

Ontogenet is applicable to other differentiation datasets, including fetal data or cancer, when 

using other predictors as candidate regulators (e.g., genetic variants as in Lirnet6), when 

cells are measured at both resting and stimulated state, or for protein expression data (e.g., 

single-cell, high-dimensional phosphoproteomic mass cytometry data26). In each case, the 

ability to share regulatory programs for related cell types or conditions can both enhance our 

power and help with biological interpretation. Notably, Ontogenet currently depends on a 

pre-constructed ontogeny. While much is known about the hematopoietic lineage, some 

parts remain unstructured (e.g., all DCs in the myeloid lineage) and some progenitors are not 

known (e.g., for γδ T cells or other innate-like lymphocytes). This reflects in part inherent 

lineage flexibility, whereby several cell types can differentiate into the same cell type, but in 

part just our current lack of knowledge of the particular progenitor of a given cell type. 

Novel methods would be required to construct an ontogeny automatically or to revise an 

existing one. In other cases, Ontogenet’s output can be used to refine a topology, by 

identifying edges that do not correspond to any changes in regulatory programs and can be 

removed without disconnecting the lineage.

The ImmGen Compendium, coarse and fine grained modules, and the identified regulators 

and regulatory relations are all available for interactive searching and browsing and for 

download in the ImmGen Portal, and will provide an invaluable resource for future studies 

of the role of gene regulation in cell differentiation and immune disease.

Methods

Dataset

Mouse expression was measured on Affymetrix Mogen1 arrays (Affymetrix annotation 

version 31). Sorting strategies for the ImmGen populations can be found on the ImmGen 

website (http://immgen.org). Gene expression data are deposited in the Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession no. GSE15907.

As the ImmGen dataset gradually grew from 2010 to 2012, clustering, regulatory program 

reconstruction, and final presentation were performed on three different ImmGen releases 

(September 2010, March 2011, and April 2012), while attempting to maximize backward 

compatibility as much as possible. The clusters and the regulatory program are from the 
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September 2010 and March 2011 releases, chosen to ensure consistency with the other 

ImmGen Report papers that refer to them. Clustering was performed on ImmGen release of 

September 2010, across 744 samples, 647 of which remained in the April 2012 release. 

Ontogenet was applied to the ImmGen release of March 2011, only to the data of the 676 

samples (195 hematopoietic cell types) that were connected to the hematopoietic tree. Thus, 

we maintained the membership in clusters from the earlier analysis, but only used some of 

the samples to learn the regulatory program. The heatmaps presented in the paper display 

755 samples (244 cell types), excluding control samples. For simplicity, there are only 720 

samples presented on the full tree (210 cell types). Supplementary Table 1 lists all the 

samples in the last ImmGen release (April 2012), and states for each sample if it was used in 

generating the modules, regulatory program reconstruction, the presented heatmaps and tree. 

The Web resource is continuously updated

Data preprocessing

Expression data was normalized as part of the ImmGen pipeline by RMA. Data was log2 

transformed. For gene symbols with more than one probeset on the array, only the probeset 

with the highest mean expression was retained. Of those, only probesets with a standard 

deviation higher than 0.5 across the entire dataset were used for the clustering, resulting with 

7,965 unique differentially expressed genes in the September 2011 release and 8,431 in the 

April 2012 release.

Lineage specific signatures

We calculated signatures for 11 lineages: GN, MF, MO, DC, B, NK, T4, T8, NKT, GDT 

and S&P. Assignment of samples into lineages is listed in Supplementary Table 2. One way 

ANOVA was performed for each of the 6,997 genes that have an expression value above 

log2(120) in at least one lineage, followed by a post hoc analysis (Matlab functions anova1 

and multcompare). For each of the 11 lineages, a gene was considered induced if it has 

significantly higher expression in that lineage compared to all other lineages. A gene was 

considered repressed if it has significantly lower expression in that lineage compared to all 

other lineages. FDR of 10% was applied to the ANOVA p-values of all genes.

Definition of modules

Modules were defined by clustering. For coarse-grained modules, clustering was performed 

by Super Paramagnetic Clustering27 (SPC), a principled approach to choose stable clusters 

from a hierarchical setting. SPC was used because it does not require a pre-defined number 

of clusters, but identifies the number inherently supported by the data. The clusters defined 

by SPC are stable across a range of parameters, though they can display variable levels of 

compactness. SPC was run with default parameters, resulting in 80 stable clusters. Those are 

named coarse-grained modules C1-C80. The remaining unclustered genes were grouped into 

a separate cluster C81.

Each coarse-grained module was further partitioned to fine-grained modules by affinity 

propagation28 clustering, with correlation as the affinity measure. The “self-responsibility” 

parameter that indicates the propensity of the algorithm to form a new cluster was set at 

0.01. Affinity propagation was used because SPC and hierarchical clustering did not further 
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break the coarse modules. Affinity propagation could not be used for for clustering all 

genes, because it has to work with a sparsified affinity matrix.

Clustering resulted in 334 fine-grained modules, referred to in the text as fine modules F1-

F334. On average, 3.9 fine-grained modules were nested in a single coarse-grained module. 

The minimal number of fine modules nested in a coarse-grained module was 1 (23 coarse-

grained modules), and the maximal was 11 (7 coarse-grained modules).

Choice of candidate regulators

Candidate regulators were curated from the following sources: (1) The mouse orthologs of 

all the genes that were used as candidate regulators in a previous study of human 

hematopoiesis4; (2) genes annotated with the Gene Ontology term ‘transcription factor 

activity’ in mouse, human or rat; (3) genes for which there is a known DNA binding motif in 

TRANSFAC matrix database29 v8.3, JASPAR30 Version 2008 and experimentally 

determined position weight matrices (PWMs)31-32; and (4) genes with published ChIP-Seq 

or ChIP-chip data (Supplementary Table 11). Regulators that were not measured on the 

array or whose expression did not change sufficiently (standard deviation < 0.5 across the 

entire dataset) to be included in the clustering were removed, unless they were highly 

correlated (>0.85) with another regulator that passed the cutoff. This resulted in 578 

candidate regulators (Supplementary Table 12).

Hematopoietic tree building

The hematopoietic tree (Fig. 1) was built by the ImmGen consortium members. Each group 

created its own sub-lineage tree, and the sub-lineage trees were connected based on the best 

current knowledge, though many edges are hypothetical (dashed lines, Fig. 1). There are two 

roots to the tree – long term stem cells from adult bone marrow (SC.LTSL.BM) and long 

term stem cells from fetal liver (SC.LTSL.FL). Each population is a node in the tree (square, 

Fig. 1). Edges indicate a differentiation step, an activation step, time (as in the activated T 

cells) or a general assumption of similarity in regulatory program (Supplementary Table 13). 

Some intermediate inferred nodes were added to group cell populations that are assumed to 

have a common progenitor or common regulatory program, but where this hypothetical 

population was not measured (e.g., granulocyte and macrophages). For the populations that 

connected to more than one parent population, one of the edges was manually pruned, either 

the less likely one or arbitrarily, as listed in Supplementary Table 13.

Module regulatory program

Ontogenet takes as input (1) gene expression profiles across many different cell types, (2) a 

partitioning of the genes into modules (coarse-grained and fine-grained clusters, above); (3) 

a predefined set of candidate regulators; and (4) an ontogeny tree relating the cell types. It 

then constructs a regulatory program for each module consisting of a linear combination of 

regulators with possibly distinct ‘activity weights’ for each regulator in each cell type. A 

module regulatory program is the linear sum of the regulators expression multiplied by each 

regulator’s activity weight, which approximates the expression pattern of the module. Each 

regulatory program aims to explain as much of the gene expression variance in the module 

as possible, while remaining as simple as possible and being consistent across related cell 
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types in the ontogeny. In a regular linear model, the activity weights are constant across all 

conditions. Here we allow a change of activity weights between cell types (Fig. 3).

Notably, all regulators are considered as potential regulators for each module. That includes 

regulators that are members of the module. Thus, a module can be assigned regulators that 

are its members, and regulators that are not its members, but regulators that are members of 

the module will not necessarily be assigned to it.

More formally, we model the expression of a gene in a module as a (noisy) linear 

combination of the expression of the regulators. We denote the activity of a regulator r in a 

cell type t as ar,t. We model the expression of a gene t, a member of module m, in cell type t 

as xi,t = ∑rwm,r,tar,t + ∈m,t, where each ∈m,t is a Gaussian random variable with zero mean 

and variance  specific to a combination of a module m and a cell type t. Hence the 

regulatory program learned by Ontogenet is represented in terms of wm,r,t activity weights 

specific to a (module, regulator, cell type) combination. Due to parameter tying enforced by 

the model, the effective number of parameters is significantly smaller than the nominal size 

of the regulatory program representation (# modules) × (# regulators) × (# cell types).

Module cell-type specific variance estimation

The module variance in a given cell type  is estimated from the expression of the 

module’s member genes across all replicates of the cell type. While we use an unbiased 

estimator, we make special considerations for the modules with less than 10 members. For 

these modules the variance estimate  is computed by a pooled variance estimator across 

modules with more than 10 members but still specific to the cell type. The estimated 

variances in a fine-grained module are typically smaller than the variances in its parent 

coarse-grained module.

Regulatory program fitting as a penalized regression problem

Estimation of the activity weights wm,r,t takes the form of a regression problem, but due to 

over-parameterization of the problem, we need to regularize it, using an extension of the 

fused Lasso framework33, giving rise to a penalized regression problem of the form

where J(w) is a chosen penalty. In our case, this penalty is composed of two parts, one 

promoting sparsity and selection of correlated predictors and another promoting consistency 

of regulatory programs between related cell types.

We assume that only a small number of regulators are actively regulating any one module. A 

standard approach to promoting such sparsity in regression problems is to introduce an L1 

penalty, the sum of absolute values ∑m∑r∑t∣wm,r,t∣. However, this penalty tends to be overly 

aggressive in inducing sparsity, thus pruning multiple highly correlated predictors and 

selecting only a single representative. This aggressive pruning may be inappropriate, since 
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the correlated regulators may all be biologically relevant due to ‘redundancy’ in densely 

interconnected regulatory circuits. Such behavior can be counteracted by the addition of 

squared terms  yielding a composite penalty known as Elastic Net11 

as previously proposed6 , which we write compactly 

as .

An important input to our regulatory program fitting procedure is the ontogeny 

(differentiation) tree (Supplementary Table 13). This tree is encoded as an edge list (f) and 

with (t1, t2) ∈ f we denote that cell type t1 is a parent of cell type t2. The similarity of the 

regulatory programs for a particular module in two related cell types (t1, t2) ∈ f can be 

assessed as a sum of the absolute value of the difference of activity weights in the two 

programs, ∑r∣wm,r,t2 – wm,r,t2∣. The key observation being that is ∣wm,r,t2 – wm,r,t2∣ is 0 if the 

regulatory relationship between regulator r and module m is the same in cell type t2 and its 

parent type t1. More generally, the total difference of the regulatory programs can be written 

as ∑(t1,t2)∈f∑r∣wm,r,t1 – wm,r,t2∣. We will write this term in a compact form as ∥Dwm∥ where 

wm is a vector of activity weights for all regulators across all cell types concatenated 

together and D is a matrix of size (RE) × (RT), where R is the number of regulators, T is the 

number of cell types and E is the number of edges in the tree. We note that multiplication by 

the matrix D computes the differences between relevant entries of the vector wm. The less 

the regulatory programs change throughout differentiation, the smaller the term ∥Dwm∥. 

Thus, using this term as a penalty will promote the preservation of a consistent regulatory 

program throughout differentiation.

Combining all the considerations above, the complete objective for fitting a regulatory 

program of a module m is given by

Optimization of this objective is somewhat complicated by the fact that absolute value is a 

non smooth function and hence direct optimization by methods such as gradient descent is 

not feasible, as these work only on smooth problems. Alternative methods, such as projected 

gradients, can be used, but their convergence is relatively slow. We therefore opted to use a 

primal dual interior point method34. Different choices of the parameters λ,κ,δ yield different 

regulatory models as solutions, with different data-fitting and model-complexity properties. 

We scanned sets of parameters in the range (The schedule for each of the parameters 

lambda, gamma and kappa was geometric: e−7, e−6,…, e3 spanning values between 0.001 

and 20) and chose the optimal set of parameters using the Bayesian Information Criteria 

(BIC) (see ‘Model selection using Bayesian Information Criterion’ section).

In order to simplify the discussion of the optimization we introduce a sparse predictor matrix 

A of size (RT) × (T) where  and 0 otherwise. Further, we note that the 
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optimal wm depends only on the mean expression profile of the module’s genes and we can 

introduce variable . Hence we can rewrite the objective as

Finally we can absorb the term  into the first term as follows

Regulatory program transfer between coarse-grained and fine-grained modules

The fine-grained modules are encouraged to have a similar program to the coarse-grained 

module in which they are nested. This is accomplished by introduction of an additional 

penalty term. We will denote the already learned regulatory program of a coarse-grained 

module as w0 and the regulatory program of a fine-grained module that we wish to learn as 

wm. The coarse-to-fine version of our objective is then

where the last term ties the coarse-grained and fine-grained modules’ programs. This 

objective can be transformed into

Solving the prototypical optimization problem

We note that both coarse-grained and fine-grained module regulatory program fitting 

problems have been expressed in the following general form

We reformulate this optimization problem by addition of variables that decouple the 

penalties.
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This reformulation enables straightforward derivation of a primal dual interior point 

method34.

Model selection using Bayesian Information Criterion

The formulation of our optimization problem above is dependent on a set of parameters 

λ,k,γ: we obtain a model by solving the convex problem above for a particular combination 

of λ,κ,γ. Different combinations of these parameters will yield regulatory programs of 

different quality. One way to identify the optimal λ,κ,γ, is by using held-out data or through 

cross validation. However, search for these parameters using cross-validation is 

prohibitively expensive. As an alternative, we use a model selection approach based on the 

Bayesian Information Criterion (BIC) to compare models resulting from different choices of 

these three parameters and select the best one. The BIC criterion compares models, here 

encoded by regulatory programs, based on their tradeoff between data log likelihood and 

degrees of freedom. The log likelihood for our model is

The computation of the degrees of freedom is somewhat technically involved but intuitively 

simple: an activity weight that remains the same through a particular connected portion of 

the differentiation tree is counted as a single degree of freedom. In order to make this more 

formal we will consider matrix A and construct its counterpart B. We will use Ar,t to denote 

a column of matrix A. We will now construct a graph where nodes correspond to columns 

of matrix A. Given two nodes corresponding to Ar,t1 and Ar,t1 the graph will have an edge 

between these two nodes if cell type t1 is a parent of cell type t2, and wm,r,t1 = wm,r,t2. The 

matrix B will have columns that are sums of columns corresponding to connected 

components in the graph. We eliminate all columns of B that are zeros and the final degrees 

of freedom are given by df(w) = Trace(B(B’B + κ diag(c))−1B’) where diag(c) is a diagonal 

matrix with entries being a number of columns of A in the connected component associated 

with a column of B .

Hence we can compute the BIC(w) as

Post-processing of regulatory programs

Once we obtain an optimal regulatory program with respect to BIC, we perform 

postprocessing to remove regulatory relationships for underexpressed regulators. We placed 

a low expression cutoff of 5.5 on the log2 scale. At this level the correlation between the 

predictor and the target module may very well be due to noise and hence the relationship 

could be spurious.
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Systematic query for known functions of regualtors

For each lineage specific module, we automatically queried its regulators in Pubmed with 

the name of the lineage/s. For each module that is up or down-regulated with differentiation, 

we queried its regulators with ‘hematopoietic differentiation’. All Pubmed queries were 

performed on July 30, 2012.

Choice of lineage regulators

For each lineage, we collected the regulators that were deemed active by having a non-zero 

activity weight and significant expression in excess of 9.0 on the log2 scale. For a given 

lineage, we deemed a regulator a lineage-activator if its average activity weight across all 

cell types in the lineage and all modules was positive. Analogously, a regulator was deemed 

a lineage-repressor if its average activity weight was negative. We subsequently ranked the 

regulators based on their average expression across cell types in which the regulator had a 

role. Hence, the regulators that were frequently active in a lineage and when active had 

higher levels of expression were ranked higher than the infrequently active or lowly 

expressed regulators. The regulators with the highest expression typically get the highest 

total activity weight across lineages.

Notably, this procedure – while straightforward – will not reflect all the lineage regulators 

identified by the model. First, those lineage regulators that act only during a limited window 

(e.g. early in differentiation) would be under-represented by this analysis, yet captured in the 

overall model in the window in which they act. Second, due to the postprocessing step 

(above) regulators with high baseline expression can have a constant activity weight even if 

their expression is very lineage specific (e.g. Gata3) and thus be under-represented in the 

recruitment analysis (though they too are chosen as regulators in the model).

Motif scanning

We scanned promoters of mouse genes for enriched motifs. We downloaded promoter 

sequences for mouse (mm9) from the UCSC Genome Browser website http://

hgdownload.cse.ucsc.edu/downloads.html. For each gene, we scanned the region starting 

from −1,000 base-pairs (bp) upstream of the transcription start site (TSS), and ending at the 

+200 base-pairs downstream of the TSS. We represented the nucleotide at position j 

(relative to −1,000 bp from the TSS) for gene i as Si,j. We represented each cis-regulatory 

element by a position weight matrix (PWM). We compiled a set of 1,651 PWMs from the 

TRANSFAC matrix database29 v8.3, JASPAR30 Version 2008, and experimentally 

determined PWMs31-32. For the kth motif, we denote its PWM by Pk, a matrix of size 4×Lk 

where Lk is the length of the motif, and Pk(i,j) represents the probability of encountering the 

nucleotide j (j = ’A’, ‘C’, ‘G’ or ‘T’) at the ith position. For each gene i, a position along the 

promoter j, and a PWM k, we computed the local motif-matching score LOD(i,j,k), defined 

as the log-likelihood ratio (LOD score) for observing the sequence given the PWM versus a 

given random genomic background:

Jojic et al. Page 19

Nat Immunol. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html


Genomic background was determined as Pb(‘A’) = Pb(‘T’) = 0.3, Pb(‘C’)=Pb(‘G’) = 0.2, 

representing the nucleotide composition in the mouse genome. We then found the best motif 

instance over the entire promoter region, defined as MAX-LOD(i,k) = maxj LOD(i,j,k).

Motif scoring threshold

We automatically computed a PWM-specific threshold by using the information content of 

each motif. The information content for the kth motif is defined as,

We defined the PWM-specific threshold for the kth motif k as τk, the 1 - 2−ICk quantile of the 

PWM LODs distribution across all genes’ promoters. We considered a ‘hit’ for the kth motif 

at the ith gene if the best score, MAX-LOD(i,k), exceeded the threshold τk.

Motif enrichment in modules

For each module of genes M, and each motif k, we computed the p-value for enrichment, 

pe(M,k) of the motif in the module, compared to the entire set of genes assigned to modules 

serving as background. An enrichment of a motif in a module results in higher than expected 

MAX-LOD scores for the genes in this module – to capture this effect, we computed the p-

value by comparing the scores MAX-LOD(i,k) for all genes i in the module M and the scores 

for the entire set of genes assigned to modules by performing a one-sided rank-sum test. We 

then employed an FDR of 5% on the entire matrix of p-values pe(M,k), and declared as 

significant hits all p-values passing this procedure. The FDR was calculated separately for 

coarse-grained and fine-grained modules.

Binding events enrichment

The public ChIP-Seq and ChIP-chip datasets listed in Supplementary Table 11 were 

downloaded (360 experiments of 109 unique regulators). The target list defined in each 

original publication was used whenever available. Otherwise, genes which had a binding 

event reported from the 1000 bp upstream to the TSS to the 200 bp downstream to the TSS 

were listed as targets. In datasets measured in human samples, gene symbols were replaced 

by the mouse gene symbol, whenever a one-to-one ortholog exists according to 

EnsemblCompara35. Only genes that were included in the clustering were considered as 

targets for the purpose of the calculation of enrichment.

Hypergeometric p-value was calculated for the size of intersection of each module with each 

target list. FDR of 10% was used for the entire table of p-values of all modules and all 

targets lists. The FDR was calculated separately for coarse-grained and fine-grained 

modules.

Estimating significance of regulatory program overlap

We report two p-values for each overlap of the three regulation models (from ChIP, cis-

elements and Ontogenet). First, we calculated the hypergeometric test for two or three 
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groups, where the universe sizes are the number of possible regulatory interactions including 

the overlapping regulators. For example, to estimate the significance of the overlap of ChIP 

and Ontogenet regulatory interactions, the universe size is the number of regulators which 

were candidates to Ontogenet and have a ChIP information, times the number of modules. 

The ChIP interactions are the enriched modules per ChIP dataset, and the Ontogenet 

interactions are the regulators chosen for each module. Second, we calculated an empirical 

p-value from 10,000 permutations of the regulators in the regulatory interactions including 

the overlapping regulators. The latter p-values were calculated to account for the fact that 

some modules have more regulators than others. The hypergeometric p-values and the 

empirical p-values are similar for the overlap of each two methods, but different in 

significance for the three methods overlap, because the hypergeometric score for three 

groups explicitly takes into account the overlap between each two groups, whereas the 

empirical p-value does not.

Functional enrichment

The MSigDB version V.3 curated gene sets (C2), motif gene sets (C3) and Gene Ontology 

(GO) gene sets (C5) were downloaded from http://www.broadinstitute.org/gsea36. Positional 

gene sets (C1) for mouse were kindly provided by Arthur Liberzon, the MSigDB curator. 

For each group, gene symbols were replaced by the mouse gene symbol, whenever a one-to-

one ortholog exists according to EnsemblCompara. Only genes that were included in the 

clustering were considered as functional group members for the purpose of the calculation of 

enrichment.

Hypergeometric p-value was calculated for the size of intersection of each module with each 

functional group. FDR of 10% was used for the entire table of p-values of all modules and 

all functional groups. The FDR was calculated separately for coarse-grained and fine-

grained modules, and for the different classes of functional annotation (C1, C2, C3, C5).

Identification of differentiation steps with a change in activity weight of regulators

For each module and each edge (differentiation step) in the hematopoietic tree, the activity 

weight of the parent was compared to the activity weight of the child, resulting in one of 

several classifications: No change – activity weights are the same. Activator recruitment – 

parent activity weight is zero, child positive; Activator strengthening – parent activity 

weight positive and smaller than child; Activator disposal – parent activity weight positive 

and child zero. Repressor recruitment – parent activity weight is zero, child negative; 

Repressor strengthening – parent activity weight negative and larger than child; Repressor 

disposal – parent activity weight negative and child zero. For simplicity, we omitted the 

regulator weakening option. Note that those lineage specific regulators that are assigned 

constant activity weight across all cell types (e.g. Gata3) will not be captured by this 

analysis, but are part of the model.

Mice

Etv5fl/fl mice37 were crossed to CD2 promoter driven Cre transgenic mice (C57BL/6) to 

generate conditional Etv5 knockout mice (CKO, CD2p-CreTg+Etvfl/fl, 3 times backcrossed 

to C57BL/6). The floxed locus is specifically deleted from the genome starting in 
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CD25+CD44−CD3−CD4−CD8− thymic precursors (termed DN3) with ~80% deletion 

efficiency in γδ thymocyte subsets as inferred from the analysis of Cre activity reporter mice 

(CD2p-CreTg+Rosa-STOPfl/fl-EYFP). Five litters of neonates (5-7 days old) and adults (4 

weeks old) containing CreTg+ controls (CD2p-CreTg+Etv5+/+) and CKO mice were 

analyzed, each with 2-5 mice/genotype.

Flow cytometry

Intracellular (Cytofix/Cytoperm Kit, BD Biosciences) and intranuclear (FoxP3 Staining Kit, 

eBioscience) staining was performed as previously described24. The following molecules 

were detected using antibodies (Abs) purchased from eBioscience: Tcrδ (GL3), CD24 

(HSA, M1/69), CD44 (IM7), CD62l (MEL-15), IL17A (ebio17B7) and RORγt (AFKJS-9). 

Abs specific for Vγ2 (UC3-10A6), Vδ6.3(8F4H7B7), CCR6 (140706), and CD27 (LG.

3A10) were purchased from BD Biosciences. Vγ1.1 Ab (2.11) was purified from culture 

supernatant and biotinylated using the FluoReporter Mini-Biotin-XX Labeling Kit 

(Invitrogen). Data were acquired on a BD LSRII cytometer and analyzed using FlowJo 

(Treestar).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mouse cell populations in the ImmGen Compendium. Shown is the lineage tree of the 

hematopoietic mouse cell types profiled by the Immunological Genome consortium 

(www.immgen.org). Some stem, progenitor and B cells were sampled from adult and fetal 

liver. Stromal cells (box, bottom right) were also measured as part of ImmGen, but are not 

part of the lineage tree. The markers used to sort each cell population are listed 

(Supplementary Table 1). Adapted from 1.
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Figure 2. 
Related cells have highly similar expression profiles. Shown are the Pearson correlation 

coefficients (purple – positive correlation; yellow – negative correlation; white – no 

correlation) between each pair of profiled cell types, calculated across the 1,000 genes (of 

the 8431 unique expressed genes) with the highest standard deviation across all samples. 

Black lines delineate major lineages. GN – granulocytes, MF – macrophages, MO – 

monocytes, DC – dendritic cells, S&P – stem and progenitor cells, PROB – preB and proB 

cells, NK – natural killer cells, T4 – CD4+ T cells, T8 – CD8+ T cells, ACTT8 – activated 

CD8+ T cells, NKT – natural killer T cells, GDT – gamma delta T cells. Samples are sorted 

by breadth-first search on the tree in Fig. 1, with stromal cells at the lower or right end.
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Figure 3. 
Overview of Ontogenet. (a) Different types of regulators (bottom) can explain the 

expression of a module (top). For each regulator, we display its expression profile (blue/red 

vectors) and activity profile (orange/purple vectors). A regulator may have a uniform 

positive activity weight across the lineage (constitutive activator, top), a uniform negative 

activity weight (constitutive repressor, middle), or variable activity weights (context-specific 

regulator, bottom). (b) The mean expression of a module (top) is a linear combination of 

regulator expression (blue red patterns, left) and activity level (orange/purple patterns, 

right).
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Figure 4. 
Ontogenet regulatory model for coarse–grained module C33. (a) Module C33. Shown is the 

mean centered expression (red blue color bar, bottom) of the module’s genes (rows) in each 

cell (column). The major lineages are noted at the bottom, and marked by thin vertical lines. 

Fine modules F175-F181 nested within C33 are separated by thin horizontal lines and 

labeled. Example gene names are noted on left. (b) Regulators expression. Shown are the 

mean centered expression levels (red blue color bar, bottom) of the regulators (rows) 

assigned by Ontogenet to module C33. (c) Regulators activity weights. Shown are the 

activity weights (orange purple color bar, bottom) for each of the Ontogenet assigned 

regulators from (b) in each cell type. (d) Mean-centered mean expression of module C33 is 

projected onto the hematopoietic tree. Low expression is blue, high expression is red. 

Selected members are listed below. Selected inferred regulators are marked by arrowhead at 

the edges in which their activity weight changes. This module contains some typical B cells 

genes, including Cd19, Blnk, Ebf1, and Cd79a.
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Figure 5. 
Ontogenet regulatory model for coarse-grained modules. Shown are lineage specific 

modules (colored as in Figure 2, except myeloid induced modules, dark purple), pan-

differentiation induced (red) and repressed (gray) modules and mixed-used modules 

(yellow) (all in inner circle), and their Ontogenet assigned regulators (outer circle, cream) 

with regulatory interactions with maximal effect (absolute activity weight*expression) 

bigger than 1. An edge connects each regulator to the module(s) it regulates.
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Figure 6. 
Changes in activity weights across the hematopoietic lineage tree. (a) High changing 

interactions. Shown are the activity weights in each cell type (column) for every highly 

changing regulatory interaction between a regulator and a coarse-grained module. Orange: 

positive (activation) activity weight; Purple: negative (repression) activity weight; White: 

zero (no regulation). The major lineages are noted by the color bar (bottom). (b) High 

changing interactions in the CD8+ T cell lineage. Shown is a zoom in (from a) only for those 

activating interactions that are recruited within the CD8+ T cell lineage. (c) Known and 

novel regulators recruited in the CD8+ T cell lineage. Shown is the CD8+ T cell lineage 

branch (squares: cell types; edges: differentiation steps) labeled with the regulators recruited 

along each differentiation step and their associated modules. Regulators previously reported 

to have a role in T cells are marked in red. The number of activity weight changes for the 

regulator on this edge, if more than one, is shown in parentheses. (d) Ontogenet-inferred 

lineage regulators. Shown is a reduced ImmGen tree with the lineage regulators. Regulators 

previously reported to have a role in that lineage are marked red.
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Figure 7. 
ETV5 is a γδ T cell regulator. (a) Relatively normal total numbers of γδ T cells are 

generated in ETV5 conditional KO (CKO) mice. In 7 day old neonates, total thymocyte 

numbers of CKO mice are decreased to ~50% of normal, but the frequency of γδTCR+ 

thymocytes is increased by ~ 2 fold, resulting in similar numbers of γδ T cells in the thymus 

and spleen as controls. One representative of three independent litters analyzed with a 

minimum of two mice/genotype is shown. Control (Ctrl) mice are CD2p-CreTg+Etv5+/+ 

littermates. (b) Altered maturation of Vγ2+ thymocytes. Top, Decreased numbers of mature 

HSA (CD24)lo Vγ2+ thymocytes in 7 day old CKO mice. Bottom, Decreased activation of 

Vγ2+ thymocytes in CKO mice as indicated by the paucity of CD44+ cells. For γδTCR+ 

thymocytes expressing other Vγ chains, the proportions of mature cells or activated cells in 

CKO mice were not different from controls. Similar results were observed in mice of 

different ages. (c) Impairment in the capacity to produce IL-17 effector cytokine by Vγ2+ 

cells. Left panels, decreased expression of IL-17 inducing transcription factor RORγt and 

corresponding decrease in IL-17 production by mature (CD24lo) Vγ2+ thymocytes in CKO 

mice. No significant difference in RORγt expression was observed in immature (CD24hi) 

Vγ2+ thymocytes. Right panels, decreased frequencies and numbers of peripheral 

CCR6+CD27−IL-17+, and a reciprocal increase in CD27+ IFNγ producing Vγ2+ lymph node 

(LN) T cells in CKO mice (4 wk old). Data are representative of five experiments.
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