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lymph node, FRCs construct and regulate a specialized reticular net-
work of fibers used by lymphocytes and DCs as a scaffold on which to 
migrate and interact3. Ensheathed by FRCs, the reticular network also 
forms a complex conduit system of microchannels that rapidly con-
duct chemokines and other small factors (<70 kilodaltons) from the 
subcapsular sinus to high endothelial venules9,10. During infection, 
the decoration of high endothelial venules with chemokines attracts 
leukocytes to lymph nodes, which promotes the adaptive immune 
response11. FRCs also secrete survival factors and chemokines that 
attract T cells and DCs2,3. Indeed, DCs in contact with the reticular 
network can process tissue-derived soluble antigens, which suggests 
that conduit-borne lymph may be an important source of antigens 
during early phases of immune responses or for the maintenance of 
peripheral tolerance9,12.

Despite their maintenance of naive lymphocytes, regulation of 
immune responses and orchestration of DC–T cell interactions, rela-
tively little is known about how FRCs, LECs and BECs interact and 
are regulated in postnatal life. Moreover, FRC-like cells identified in 
autoinflammatory or cancerous lesions are associated with worsened 
clinical outcomes13,14. Nonetheless, knowledge of the transcriptional 
identity of FRCs is limited; at present, it is essentially understood to 
consist of a generic myofibroblastic phenotype with expression of 

Transcriptional profiling of stroma from inflamed and 
resting lymph nodes defines immunological hallmarks
Deepali Malhotra1,2,8, Anne L Fletcher1,8, Jillian Astarita1,2, Veronika Lukacs-Kornek1, Prakriti Tayalia3, 
Santiago F Gonzalez4, Kutlu G Elpek1, Sook Kyung Chang5, Konstantin Knoblich1, Martin E Hemler1,  
Michael B Brenner5,6, Michael C Carroll4, David J Mooney3, Shannon J Turley1,7 & the Immunological  
Genome Project Consortium9

The Immunological Genome (ImmGen) Project is a multicenter 
collaborative venture of immunologists and computational biolo-
gists that aims to build a comprehensive, publicly accessible database 
of gene-expression and gene-regulatory networks in the immune 
system of the mouse. The data generation involves shared, rigor-
ously controlled methodology and analysis pipelines1. As part of 
this collaboration, we have meticulously analyzed the transcriptomes 
of lymph node stromal cells (LNSCs) under steady-state and inflam-
matory conditions.

LNSCs are nonhematopoietic cells crucial for the normal func-
tioning of the immune system, yet they are difficult to study and 
 constitute ~1% of lymph node cellularity. Expression of the glycopro-
tein podoplanin (gp38) and the adhesion molecule CD31 (PECAM-1) 
distinguishes the following LNSC subsets: gp38+CD31− fibroblas-
tic reticular cells (FRCs), gp38+CD31+ lymphatic endothelial cells 
(LECs), gp38−CD31+ blood endothelial cells (BECs) and gp38−CD31− 
double-negative cells (DNCs)2. LNSCs have distinct roles in orches-
trating immune responses, whereas FRCs and LECs also promote tol-
erance3–7. LECs facilitate the entry of antigen-bearing dendritic cells 
(DCs) and soluble antigens into lymph nodes3 and control lymphocyte 
egress8, whereas BECs form vessels that allow naive lymphocytes to 
enter lymph nodes through high endothelial venules3. Inside the 
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identified specialized elements such as chemokines. Evidence sug-
gests that FRCs and LECs may also have important roles in tolerance 
induction, yet their expression of pathogen receptors and antigen-
presenting machinery remains almost completely unstudied.

Transcriptomics is a powerful, unbiased starting point for deter-
mining a cell’s biology and identifying large numbers of new targets 
for further study, including molecular pathways, surface receptors and 
secreted factors. So far, transcriptomics has not been used to examine 
the specialization of multiple stromal cell types. We therefore aimed 
to create a comprehensive, ‘cross-comparable’ database of stromal 
transcriptional profiles.

We examined the transcriptomes of FRCs, LECs, BECs and poorly 
studied DNCs2,6,7, identifying and analyzing each subset’s unique 
expression signature. We matched the expression of immune media-
tors and growth factors to that of cognate receptors on likely hemato-
poietic and stromal partners. Analysis of steady-state LNSCs also 
suggested a readiness to respond to inflammatory or infectious trig-
gers, a hypothesis we further explored by profiling LNSCs that we 
isolated during an immune response. Next, we more fully charac-
terized the molecular makeup of the lymph-node reticular network. 
We observed substantial differences in the transcriptional profiles of 
FRCs and their skin and thymic counterparts, which reflected func-
tional specialization. Finally, whereas the lineage, function, localiza-
tion and identifying surface markers of DNCs were all previously 
unknown2,6,7, this in-depth analysis showed that this subset consists 
largely of contractile, FRC-like pericytes.

RESULTS
Comparative transcriptional distances between LNSC subsets
To obtain transcriptomes for each subset, we sorted FRCs, LECs, 
BECs and DNCs to high purity from stroma-enriched fractions of  
lymph nodes from C57BL/6 mice (Fig. 1a,b and Supplementary  
Fig. 1a,b). Through the use of profiling and quality-control pipelines 
of the ImmGen Project1, we generated gene-expression profiles on 
microarrays (Supplementary Notes 1 and 2). All data analyzed below 
passed the quality control of the ImmGen Project, with good replicate 
quality (median inter-replicate coefficient of variation values of 0.086–
0.205). We assumed the general ImmGen Project threshold of 120 after 
normalization to indicate positive expression (at 95% confidence) and 
included probes in the comparisons only if they were expressed by 
at least one cell type and showed low variability within populations 
(Online Methods). Inspection of the data demonstrated expression 
of the expected markers, and samples lacked expression of common 
hematopoietic markers (Fig. 1c and Supplementary Fig. 1c,d).

We examined global relationships among sorted LNSCs by prin-
cipal component analysis (PCA), based on the 15% of probes with 
the greatest difference in expression. This mathematical transfor-
mation simplifies multidimensional expression data into princi-
pal components, each of which accounts for a proportion of total 
variability (Fig. 1d). For each cell type, samples from skin-draining 
lymph nodes (SLNs) and mesenteric lymph nodes (MLNs) clustered 
tightly, which reflected conservation of subset-specific genes between 
these tissues. Along the first two principal components, which 
accounted for 83.5% of the observed variability, FRCs and DNCs 
were positioned closer to each other than to either endothelial subset. 
However, FRCs and DNCs clearly separated along the third prin-
cipal component, which demonstrated a transcriptionally distinct 
relationship. These relationships were also evident on matrix plots 
of population concordance (measured by Pearson’s correlation and 
Euclidean distance; Fig. 1e and Supplementary Fig. 1e). Hierarchical 
clustering of probes with differences in expression reinforced relative 

transcriptional similarities between FRCs and DNCs and between 
LECs and BECs15 (Fig. 1f). These data showed that stromal subsets 
from different locations did not undergo considerable site-specific 
differentiation and that DNCs shared more transcriptional similarity 
with FRCs than with LECs or BECs.

Identification of LNSC subset–specific genes and pathways
Next we compared FRCs with BECs and LECs to identify subset-
 specific transcriptional signatures (Fig. 2a). We used a count of probes 
with a difference in expression of over twofold as a simple metric 
of transcriptional differences; SLN FRCs differed from SLN BECs 
and LECs by 2,026 and 1,936 probes, respectively (Fig. 2a). These 
differences were highly conserved in SLNs and MLNs, as shown by 
the distribution of probes along the diagonal in the plots comparing 
change in expression.

Probes upregulated in SLN FRCs relative to their expression in one 
endothelial cell (EC) subset also tended to be upregulated relative to 
their expression in the other EC subset (>91.3% of probes; Fig. 2b), 
which emphasized the closer developmental relationship between 
LECs and BECs. In fact, SLN BECs and LECs differed in expression 
of fewer probes (Fig. 2c), and on average these differences were of a 
magnitude smaller than those between ECs and FRCs. This pattern 
was also highly conserved in MLNs (Fig. 2c).

To better understand how FRCs differed from sorted ECs, we iden-
tified 594 FRC-specific probes and 513 EC-specific probes (upregu-
lated in LECs and BECs; delta score (δ) = 1.0 (adjusted change in 
expression of twofold or more (adjusted ‘fold change’ (FC) ≥ 2)) 
for at least one comparison, and δ = 0.85 (adjusted FC ≥ 1.8) for all 
other comparisons; P < 0.05 for differences in expression value (EV); 
Supplementary Tables 1 and 2). The delta-score module computes 
adjusted FCs between two populations, minimizing noise by expo-
nentially penalizing FCs for intrapopulation variability.

To identify previously unknown, immunologically relevant genes 
and pathways associated with these cells, we analyzed signature probe 
lists by collating genes into functional pathways in the KEGG database 
(Kyoto Encyclopedia of Genes and Genomes) and ranking those path-
ways on the basis of statistical overrepresentation with the DAVID 
bioinformatics database (Database for Annotation, Visualization 
and Integrated Discovery)16. The list of FRC-specific probes showed 
enrichment for genes encoding molecules involved in interactions 
between the extracellular matrix (ECM) and receptors, focal adhesion 
and cytokine–cytokine receptor interactions (Fig. 2d). In contrast, 
the list of EC-specific probes showed enrichment for genes encoding 
molecules relevant to leukocyte transmigration. That list also showed 
enrichment for genes encoding molecules involved in signaling via 
vascular endothelial growth factors (VEGFs) and cell-cell adhesion, 
vital for the regulation of vessel integrity and permeability (Fig. 2d). 
These global overviews confirmed known stromal functions, which 
allowed us to simultaneously comb cell-specific lists for genes not 
reported before in LNSCs while providing clues to the likely function 
of the molecules they encode.

Molecular communication in the lymph node
We explored the enrichment of FRCs for higher expression of 
cytokine-related genes by examining LNSC expression of cytokines, 
growth factors and immunologically relevant receptors, paired with 
the expression of cognate ligands and receptors by stroma and key 
hematopoietic populations (Fig. 3a,b). We identified LNSCs as rich 
sources of signals and growth factors recognized by hematopoietic 
cells (Fig. 3a,b). LNSCs shared expression of receptors for common 
immune mediators such as type I and type II interferons, TGF-β and 
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TNF; however, subsets also showed unique transcriptional profiles for 
cytokine and chemokine responsiveness, pathogen recognition, and 
costimulatory potential (Fig. 3a,b and Supplementary Fig. 2a,b).

Interleukin 7 (IL-7) crucially maintains naive lymphocytes in 
lymph nodes2,3, and although IL-7 mRNA has been found in FRCs, 
10% as much transcript has also been detected in pooled ECs2. 
We found that FRCs and LECs produced lL-7 transcripts, whereas 
BECs and DNCs did not (Fig. 3a). Furthermore, T cells, natural 
killer cells, natural killer T cells and DCs expressed mRNA for the 
IL-7 receptor α-chain (Fig. 3a). FRCs expressed the B cell–survival 
factor and T cell–costimulator BAFF17. FRCs also produced tran-
scripts encoding molecules that support myeloid cells, including 
IL-34, which binds the receptor for macrophage colony-stimulating 
factor 1 (ref. 18); the cytokine Flt3L, shown to bind the receptor 
tyrosine kinase Flt3 and to support the development, mainte-
nance and population expansion of DCs19; and the monocyte-DC  

chemoattractant CXCL14 (Fig. 3a,b). DNCs also expressed many 
of these factors, albeit in much lower amounts.

FRCs also regulate lymph node vasculature20. They expressed 
VEGF-A, as reported20, and we detected transcripts for several other 
angiogenic regulatory molecules, including VEGF-C, ANGPTL2, 
HGF, GREM1 and SERPINF1 (Fig. 3a). DNCs shared the expression 
of some of those factors, whereas ECs expressed the relevant recep-
tors (Fig. 3a). ECs produced fibroblastic growth factors, including 
PDGFA, PDGFB, PDGFC and PDGFD, which suggested a dynamic 
codependence between FRCs and ECs.

FRCs dominated chemokine production, although here too DNCs 
resembled FRCs (Fig. 3b). As expected, FRCs produced large amounts 
of transcripts for the chemokines CCL19 and CCL21a, whereas rel-
evant hematopoietic subsets expressed the chemokine receptor CCR7 
(Fig. 3b). Although we detected little CCL19 mRNA in ECs, in agree-
ment with published reports2, BECs showed substantial expression of 
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CCL21a (Fig. 3b). Unexpectedly, in FRCs we found considerable tran-
scription of CXCL13, a B cell chemoattractant reportedly restricted 
to follicular dendritic cells and a minor MAdCAM-1+ population of 
marginal reticular cells. We did not detect follicular dendritic cells 
in our cell preparations, on the basis of expression of their canonical 
markers CD21, CD35 and FcεRII (Supplementary Fig. 3a,b). We 
determined whether marginal reticular cells were responsible for 
the observed CXCL13 expression by sorting MAdCAM-1− FRCs 
and MAdCAM-1+gp38+CD140a+CD31− marginal reticular cells. 
Both subsets had similar expression of CXCL13, as assessed by PCR 
(Supplementary Fig. 3c). Consistent with the PCR data, MAdCAM1− 
and bulk SLN FRCs had a similar abundance of CXCL13 transcripts, 
as measured by microarray (Supplementary Fig. 3d).

FRCs transcribed other chemokines, such as CCL2 and CCL7, that 
may facilitate the recruitment or organization of receptor-expressing  
memory T cells and DCs (Fig. 3b). FRCs were the main source of 
the lymphocyte chemoattractant CXCL12, with more than twice 
as much expression as that in BECs and DNCs. LECs uniquely 
expressed CCL20 (Fig. 3b), which is suggested to promote the 
egress of activated T cells from lymph nodes21. Memory T cells and 
B cells had the highest expression of CCR6 transcripts, which sug-
gested that CCL20 may be relevant to these populations. Together 
these data indicated that LNSCs were important in regulating 
hematopoietic-cell recruitment to and localization within secondary  
lymphoid organs.

Integrins help shape cell-cell and cell-ECM interactions; we there-
fore examined LNSC integrin-expression profiles. Although subsets 
shared expression of certain integrin chains, such as integrins α1, α5 
and β1, the expression of other chains had a more restricted pattern 
(Fig. 3c). In fact, DNCs expressed little integrin α2, in contrast to 
FRCs, LECs and BECs, and this was also evident at the protein level 
(Fig. 3c and Supplementary Fig. 2c,d). Meanwhile, FRCs and DNCs 
shared expression of the integrin chains α11 and β5, whereas among 
LNSCs, DNCs uniquely expressed the integrin chains α7, α8 and α4. 
These data suggested that stromal subsets support hematopoietic 
cells as well as each other via complex regulatory networks.

Identification of previously unknown conduit-network components
FRCs create unique yet poorly studied conduits that deliver small, 
lymph-borne factors to the cortex faster than filtration through cell-
dense tissue would allow. At the conduit center lies a collagen-rich 
core, enveloped by a microfibrillar zone that contains fibrillins and 
the antigen recognized by the monoclonal antibody ER-TR7 (ref. 9; 
Supplementary Fig. 4a). Surrounding the microfibrillar zone is a 
basement membrane ensheathed by FRCs9. As FRCs showed enrich-
ment for higher expression of genes encoding molecules involved in 
ECM-receptor interactions (Fig. 2d), we examined the transcription 
and secretion of conduit components by FRCs (Fig. 4).

In addition to expressing collagens I and IV9, FRCs expressed tran-
scripts for collagens III, V, VI, XIV and XVI (Fig. 4a). DNCs resembled 
FRCs in their expression of these molecules. BECs had the highest 
expression of collagen XV, whereas LECs and DNCs shared expression 
of collagen XII. Immunofluorescence microscopy showed ensheath-
ment of collagen XIV by ER-TR7, which placed it in the collagen core 
(Fig. 4c and Supplementary Figs. 4b and 5). Collagen VI, however, 
mostly localized together with ER-TR7, which localized it to the 
microfibrillar zone (Fig. 4d and Supplementary Figs. 4f and 6).

FRCs can regulate conduit structure and organization through 
the secretion of molecules such as small leucine-rich proteoglycans 
(SLRPs). SLRPs regulate collagen fibrillogenesis, bridge collagen I 
fibrils to the basement membrane and interact with growth factors22. 
FRCs had high expression of the SLRPs lumican, fibromodulin, osteo-
glycin, decorin, biglycan and prolargin (Fig. 4a). As detected by 
immunofluorescence microscopy, decorin, biglycan and fibromodulin 
were surrounded by ER-TR7 and localized to the conduit core (Fig. 4c 
and Supplementary Figs. 4c–e, 7 and 8).

The conduit basement membrane contains laminin-8 (α4β1γ1) and 
laminin-10 (α5β1γ1)9, which were expressed by all LNSCs (Fig. 4a). 
FRCs expressed the laminin chains α2, α3 and γ3 (Fig. 4a), which 
suggested that other laminins may also contribute to conduit struc-
ture and function. FRCs expressed transcripts for the glycoprotein 
vitronectin, which promotes cell adhesion and spreading, inhibits the 
membrane-attack complex of the complement system and prevents  

Figure 2 Unbiased analysis of LNSCs provides 
insight into FRC function. (a) Comparison of  
the expression profiles of FRCs with those of 
BECs (top) or LECs (bottom), for SLNs and 
MLNs; probes along diagonals have similar 
expression in both sites. Colors indicate probes 
upregulated in SLN FRCs (blue) or in SLN BECs  
(gray, top) or SLN LECs (gray, bottom; FC > 2, 
EV > 120 for at least one LNSC subset, and  
CV < 0.5 for all LNSCs). Numbers in quadrants 
indicate number of probes in each. vs, versus. 
(b) Projection of probes identified in a onto 
volcano plots of SLN FRCs and SLN LECs (top) 
or SLN BECs (bottom). Numbers in quadrants 
indicate total number of probes of that color on 
that side of the vertical axis. P < 0.0001 (χ2 test).  
(c) Comparison of BEC and LEC expression 
profiles; colors indicate probes upregulated 
in BECs (blue) or LECs (gray; values as in a). 
(d) Enrichment in KEGG pathways for probes 
upregulated in FRCs relative to their expression 
in ECs or vice versa (δ = 1.0 (adjusted FC ≥ 2) 
for at least one comparison, and δ = 0.85 (adjusted FC ≥ 1.8) for all other comparisons; P < 0.05 for differences in expression). Blue indicates KEGG 
pathways with the most significant enrichment (Benjamini procedure; KEGG accession code in parentheses): focal adhesion (mmu04510), ECM-receptor 
interactions (mmu04512), cytokine–cytokine receptor interactions (mmu04060), cancer pathways (mmu05200), glutathione metabolism (mmu00480), 
cell-adhesion molecules (mmu04514), adherens junction (mmu04520), VEGF signaling pathway (mmu04370), axon guidance (mmu04360) and 
leukocyte transendothelial migration (TEM; mmu04670). Data are representative of one experiment with four to five independent replicates.
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interactions between plasminogen activator inhibitor-1 and the 
ECM23. Vitronectin has been detected mainly in B cell follicles, but 
it also shows a reticular pattern in the T cell zone24. We found that 
vitronectin decorated the surface of ER-TR7+ fibers, forming cage-
like structures at conduit branch points (Fig. 4e and Supplementary 
Figs. 4g and 9) and was wrapped by α-SMA+ FRCs, which localized 
it to the basement membrane (Supplementary Fig. 4h).

Lymph nodes undergo considerable expansion and contraction 
during immune responses, often within a matter of hours, which 
suggests extensive remodeling of the ECM to accommodate these 
changes. Matrix metalloproteinases (MMPs), which are important for 
turnover of the ECM in extranodal tissues as well25, were expressed 
by LNSCs (Fig. 4a). The abundance of transcripts for MMP2 and 
MMP3 was greatest in FRCs and DNCs, whereas FRCs, DNCs and 
LECs had substantial expression of transcripts for MMP9 and MMP14 
(Fig. 4a). In contrast, BECs had the highest expression of MMP15. 
LECs and BECs also had higher expression of mRNA and protein of 
the metallopeptidase ADAM10 than did FRCs or DNCs (Fig. 4a,b). 
FRCs produced large amounts of transcripts for molecules involved 
in matrix and elastic fiber assembly, including LOX, LOXL1, MFAP-2, 
MFAP-5 and FBLN1 (Fig. 4a). These data described a more complex 
picture of conduit structure and ECM maintenance by FRCs than 
previously realized.

Organ-specific specialization of fibroblastic stroma
FRCs are thought to be highly specialized to the lymphoid microenvi-
ronment, but in-depth comparisons with other fibroblast populations 
have not been made. We analyzed CD45−gp38+CD31−CD140a+ skin 
fibroblasts (SFs), sorted to high purity (n = five mice per replicate; 
Supplementary Fig. 10a–c), and MTS-15+ thymic fibroblasts (ThFs). 
We computed population distances for probes with different expres-
sion through the use of PCA, correlation scores and Euclidean dis-
tances (Fig. 5a–c). Lymph node FRCs were most similar across all 
metrics. PCA and Euclidean distance suggested that FRCs were more 
like SFs, whereas correlation scores indicated higher concordance 
between SFs and ThFs.

We mapped the genes that distinguished SLN FRCs, ThFs and 
SFs by pairwise comparisons (δ = 1.0 (adjusted FC ≥ 2); P < 0.05 
for differences in EV; Supplementary Table 3) to KEGG pathways. 
Presentation of the enriched pathways (P < 0.05, Benjamini procedure) 
on P value–by–P value plots identified five biologically interesting 
results (Fig. 5d). FRC-specific probes showed unique enrichment for 
the cytokine–cytokine receptor pathway, as shown by this pathway’s 
position on the FRC plot (Fig. 5d). Notably, relative to SF-specific  
probes, FRC-specific and ThF-specific probes were biased toward 
genes encoding molecules involved in antigen presentation and cell 
contraction (Fig. 5d). SFs showed enrichment for higher expression 
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Figure 3 Expression of cytokines, growth factors and immunologically relevant receptors by stromal and hematopoietic cell subsets. (a) Heat-map 
analysis of the expression of cytokines, growth factors and receptors by LNSCs and 11 lymph node hematopoietic subsets (EV > 120 for the receptor 
or ligand in any stromal population), for log2-transformed data. pDC, plasmacytoid DC; MF, macrophage; B, B cell; NK, natural killer cell; NKT, natural 
killer T cell; Nve, naive; T, T cell; Mem, memory. (b) Analysis of the expression of chemokines and chemokine receptors as in a. (c) Analysis of the 
expression of integrins as in a. Data are representative of one experiment with three to five independent replicates (mean values). 
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of genes encoding molecules that serve classical fibroblast functions 
involving ECM-receptor interactions (Fig. 5d).

FRCs had higher expression than SFs had of many components of 
the major histocompatibility complex (MHC) class I pathway, includ-
ing antigen-processing machinery and canonical and noncanonical 
MHC class I molecules (Supplementary Fig. 10d). ThFs, SLN ECs and 
hematopoietic cells also had a greater abundance of such transcripts,  
which suggested that lymphoid-tissue environments might enhance 
transcription of these genes. Although FRCs had higher expression 
of some components of the MHC class II pathway than did SFs, 
this expression was much lower than that in ‘professional’ antigen- 
presenting cells (Supplementary Fig. 10d).

In addition to presenting self antigens, FRCs regulate the recruitment 
of cells of the immune response to lymph nodes and their homeostasis 
within lymph nodes. Although FRCs, SFs and ThFs produced tran-
scripts for similar chemokines and cytokines, the transcript abundance 
was much greater in FRCs (Supplementary Fig. 10d). This reflected 
the functional specialization of these lymph-node residents.

KEGG analysis suggested that FRCs and ThFs were more biased 
toward contractile ability than were SFs (Fig. 5d). FRCs express α-SMA,  
and their contractility has been demonstrated by a wrinkle assay2.  
Although FRCs had much higher expression of α-SMA and smooth 
muscle myosin light chain than did SFs or ThFs (Supplementary  

Fig. 10d), both FRCs and ThFs produced a greater abundance of tran-
scripts for other smooth muscle-associated genes (Supplementary 
Fig. 10d). Consistent with their expression profile, FRCs had stronger 
contractile function than did NIH3T3 mouse fibroblasts, on par with 
that of C2C12 mouse myoblasts (Fig. 5e).

The production and maintenance of ECM are fundamental char-
acteristics of fibroblasts. KEGG pathway analysis suggested that 
SFs were most specialized in these functions (Fig. 5d). Notably, 
whereas all fibroblastic populations shared expression of most ECM 
 components, FRCs uniquely expressed certain ECM or matrix-
 regulatory molecules or shared expression of those molecules  
with ThFs (Supplementary Fig. 10d). In contrast to SFs, FRCs 
and ThFs had considerable transcription of MMP9. FRCs also 
had the highest expression of the ECM-remodeling molecules 
MMP23 and heparanase and the conduit components vitronectin 
and fibromodulin (Supplementary Fig. 10d). Together these data 
demonstrated that FRCs shared an unexpectedly large number of 
characteristics with their skin and thymic counterparts, but they 
were nonetheless specialized to their unique microenvironment.

Cadherin-11 identifies cell-cell junctions between FRCs
FRCs interacted closely with each other as they ensheathed the 
 reticular fibers that they secreted (Supplementary Fig. 11); however, 
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Figure 4 Transcriptional insights into the lymph-node conduit 
network. (a) Identification of proteinaceous ECM components  
by gene ontology (AmiGO database), presented as heat maps  
of expressed probes (EV > 120 for any LNSC population) for  
log2-transformed data; blue indicates higher expression.  
(b) Expression of ADAM10 (black lines) by freshly isolated SLN 
FRCs, LECs, BECs and DNCs, assessed by flow cytometry. Isotype 
(gray shading), isotype-matched control antibody. (c) Confocal 
immunofluorescence microscopy of reticular fibers in the T cell 
zone stained for the ER-TR7 antigen (red) and the following 
collagen core components (green): collagen XIV (top left), decorin 
(top right), biglycan (bottom left) and fibromodulin (bottom 
right). (d) Confocal microscopy as in c, with staining for the  
ER-TR7 antigen (red) and the microfibrillar zone constituent 
collagen VI (green). (e) Confocal microscopy as in c, with staining 
for the ER-TR7 antigen (red) and vitronectin (green), newly 
identified as being localized to the basement membrane.  
Scale bars (c–e), 2 µm. Data are representative of one experiment 
with three to five independent replicates (a), three independent 
experiments with seven mice (b) or four to five independent 
experiments (c–e).
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little is known about these junctions. We examined the expression 
of candidate cell-adhesion molecules by LNSCs and observed high 
expression of cadherin-11 by FRCs (Fig. 6a). Cadherin-11 is a member 
of the calcium-dependent cadherin family of adhesion molecules26. 
Expression of cadherin-11 in the lymph node has been observed 
before27; however, its specific localization has remained unknown. 
Notably, we also observed transcripts for cadherin-11 in SFs and ThFs 
(and, to a lesser extent, DNCs; Fig. 6a), which reflected a common 
mesenchymal origin of these cells26. We confirmed, by flow cytometry, 
surface expression of cadherin-11 on freshly isolated FRCs (Fig. 6b). 
In accordance with the microarray data, ECs had little to no expression 
of cadherin-11, DNCs had some expression and hematopoietic cells 
were distinctly negative for this molecule (Fig. 6b).

Cadherin molecules form homotypic interactions, binding cadherins 
of the same type in adjacent cells and interacting laterally within a single 
cell26. We evaluated the localization of cadherin-11 on populations of 
FRCs expanded in vitro and found they maintained surface expression of 
this protein (Fig. 6c). We observed cadherin-11, by immunofluorescence 
microscopy, in junctions between adjacent FRCs (Fig. 6d), as shown in 
fibroblast-like synoviocytes26. The specific expression of cadherin-11 in 
FRCs suggested that it may contribute to FRC-FRC interactions.

DNCs are contractile pericytes
Several groups have reported the existence of DNCs2,6,7, which con-
stitute 5–10% of LNSCs yet have unknown lineage, localization, 
 phenotype and function. It is unclear whether DNCs encompass 
highly tolerogenic extrathymic cells that express the transcriptional 
regulator Aire5. Unlike those extrathymic Aire-expressing cells, DNCs 
do not express the adhesion molecule EpCAM6 but are the only LNSC 
subset known to transcribe even small amounts of Aire6,7, although 
Aire protein has not been noted6. Among LNSCs, DNCs uniquely 

lack expression of Toll-like receptor 3 (TLR3)6 and have different 
expression of peripheral tissue–restricted antigens6. DNCs lack many 
surface proteins characteristic of other LNSCs. As part of our sorting 
strategy, we chose to further define DNCs as CD44−, as we found that 
this combination excluded contaminating CD45loCD44+ cells.

Throughout our analysis, DNCs resembled FRCs. We compared 
DNCs with other LNSCs by two-class EV-versus-FC plots. DNCs 
and FRCs differed in the expression of 834 probes (FC ≥ 2; Fig. 7a). 
In contrast, DNCs and ECs varied in expression of more than 1,880 
probes (Fig. 7b,c). Thus, the transcriptional profiles of DNCs and 
FRCs were similar despite considerable differences in surface pheno-
type6. We identified probes specific to SLN DNCs and FRCs (δ = 1.0 
(adjusted FC ≥ 2); P < 0.05 for differences in EV in DNCs versus FRCs; 
Supplementary Table 4). MLN DNCs closely resembled SLN DNCs 
in the expression of genes measured by these probes (data not shown). 
By DAVID analysis, the list of FRC-specific probes showed enrich-
ment for genes encoding molecules involved in cytokine-cytokine 
receptor interactions. In contrast, DNCs had high expression of genes 
encoding molecules with structural and contractile functions and had 
KEGG profiles reminiscent of those of cardiomyocytes and smooth-
muscle cells (Fig. 7d). We assessed genes encoding molecules impor-
tant for smooth-muscle contraction, including actin subtypes and 
myosin chains (Fig. 7e). Of those genes, the expression of Actg2 and 
Myh11 is described as being specific to smooth muscle cells28, whereas 
the expression of others is common to multiple cell types. Notably, 
whereas α-SMA is often used as a surrogate marker for FRCs, DNCs 
had the highest expression of transcripts for this protein (Fig. 7e).

We next sought potential markers to delineate the conceivably 
heterogenous ‘bulk-negative’ (gp38−CD31−CD45−CD44−) DNC 
population, hoping to assign it a lymph-node microniche and 
probable function. The following two candidates arose: calponin-1  

Figure 5 Transcriptional specialization of 
FRCs, ThFs and SFs. (a) PCA of the 15% 
of probes with the greatest difference in 
expression among SLN FRCs, MLN FRCs, SFs 
and ThFs, for log2-transformed and row- and 
column-standardized EVs. (b) Heat map of 
correlation values (Pearson coefficient) for the 
15% of probes with the greatest difference in 
expression identified in a, calculated with log2-
transformed and row-standardized data.  
Blue indicates highest correlation. (c) Heat 
map of Euclidean distances for the 15% 
of probes with the greatest difference in 
expression identified in a (data transformed 
as in b). Blue indicates samples with the 
smallest distance. (d) Scatter plots of 
significant results from pooled KEGG pathway-
enrichment analyses of cell type–specific 
lists generated from pairwise delta-score and 
multiplot analyses (δ = 1 (adjusted FC ≥ 2), 
P < 0.05). P values (Benjamini procedure) 
are presented in terms of pathway enrichment 
in FRCs (left), SFs (middle) or ThFs (right). 
Colored letters indicate biologically notable 
results (KEGG accession code in parentheses): 
A, antigen processing and presentation 
(mmu04612); B, cytokine–cytokine receptor 
interactions (mmu04060); C, vascular smooth 
muscle contraction (mmu04270); D, ECM-
receptor interactions (mmu04512); E, focal 
adhesion (mmu04510). (e) Comparison of the contractile activity of FRCs, NIH3T3 fibroblasts and C2C12 myoblasts in vitro. *P < 0.05 (Benjamini 
procedure). Data are representative of one experiment with three to five independent replicates (a–d) or two experiments (e; mean ± s.d.).
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(CNN1) and integrin α7 (ITGA7; Fig. 7f). CNN1 is an actin- 
associated protein specific to smooth muscle cells and is a chief regu-
lator of force production in contractile cells28. ITGA7 pairs with 
integrin chain β1 to bind laminin-1, laminin-2 and laminin-4 in the 
basement membrane and is important for linking muscle fibers to 
the ECM29. Indeed, we found that sorted DNCs grew in culture only 
when supplemented with Matrigel (a gel consisting of basement-
membrane proteins) and formed strong contractile attachments to the  
matrix (Fig. 7g).

Analysis with antibody to CNN1 (anti-CNN1) and anti-ITGA7 
identified DNCs as pericyte-like cells, surrounding some medullary 
and cortical vessels (Fig. 7h,i). There were no apparent morphological  
differences between vessels with or without these cells. Staining with 
anti-CNN1 also identified an elongated, subcapsular DNC subset 
limited to the medullary face of the lymph node. This subset was 
not stained by anti-ITGA7 (data not shown). By flow cytometry, 
however, it was apparent that staining with anti-CNN1 identified a 
small minority (<5%) of DNCs, whereas anti-ITGA7 stained >50% 
of DNCs (Supplementary Fig. 12), which suggested that pericytes 
were the main population of DNCs. These data identified most 
DNCs as fibroblastic, contractile pericytes, which we called ‘ITGA7+  
pericytes’ (IAPs).

Inflammation triggers transcriptional changes in LNSCs
FRCs, LECs, BECs and IAPs are positioned at key sites throughout 
the lymph node to encounter lymph-borne molecules, and their 
steady-state transcriptional profiles suggested they are poised to 
respond to inflammatory or infectious insults. To investigate the 
responses of stromal cells to inflammation and ongoing immune 
responses, we transferred 1.5 × 106 OT-I T cells (which have trans-
genic expression of an ovalbumin-specific T cell antigen receptor)  
intravenously into 5-week-old C57BL/6 mice. At 18 h after T cell 
transfer, we gave mice intravenous injection of 30 µg lipopoly-
saccharide from Escherichia coli (serotype O127:B8) and 500 µg 
ovalbumin (Supplementary Fig. 13a). We isolated FRCs, LECs and 
BECs from SLNs (n = 5–6 mice per replicate) 12 h after injection of 
mice with lipopolysaccharide and ovalbumin and sorted the cells to 
high purity (called ‘12 h cells’ or ‘12 h mice’ here; Supplementary 
Fig. 13b). Because of the rarity of IAPs, we did not sort this subset 
for further analysis.

Treatment changed the transcriptional profiles of FRCs, LECs and 
BECs considerably, as demonstrated by hierarchical clustering of 373 
probes with different expression (FC > 2, P < 0.05) in 12 h stromal 
subsets and in their corresponding untreated counterparts (Fig. 8a). 
We identified 113 such probes for further study (δ = 1.0 (adjusted 
FC ≥ 2); P < 0.05 for differences in EV for SLN FRCs from 12 h mice 
versus SLN FRCs from untreated mice, and so on; Supplementary 
Table 5). Probes upregulated in 12 h FRCs and BECs showed  
substantial enrichment for the KEGG antigen-processing and  

antigen-presentation pathway, in contrast to probes upregulated in  
12 h LECs (Fig. 8b). Probes downregulated after treatment of mice 
did not show enrichment for particular KEGG pathways.

Projection of the 113 probes onto FC–versus–P value plots of 
stromal subsets isolated from 12 h mice and untreated mice resulted 
in similar probe distributions, although FRCs seemed to respond 
most strongly at this time point, as FCs were generally largest for 
this subset (Fig. 8c). Consistent with their residence in an inflam-
matory milieu, 12 h FRCs demonstrated enhanced expression of 
genes encoding molecules involved in the acute-phase response 
(including SAA3, A2M, and SERPINA1B), whereas all three sub-
sets has more mRNA encoding the inflammatory chemokines CCL5 
and CXCL9 (Fig. 8c). In addition, transcripts of many genes that 
are inducible by interferons or TLR4 signaling or genes encoding  
molecules that regulate these pathways, such as IRF7 (ref. 30), LY6A31  
and LCN2 (ref. 32), were upregulated in 12 h stroma (Fig. 8c).  
The 12 h stromal subsets had less mRNA for NR1D1, a negative 
regulator of TLR4 signaling33. We observed that although they were 
not part of the 113-probe list, transcripts for IL-7 and IL-33 were also 
significantly upregulated in 12 h FRCs (2.6-fold, P = 0.003 (IL-7);  
1.9-fold, P = 0.001 (IL-33)). The expression of transcripts for a  
variety of ECM-associated molecules (such as MMP9, POSTN, 
COL6A6, and LAMA2) was significantly downregulated in FRCs 
after treatment of mice with lipopolysaccharide and ovalbumin,  
and we also observed this trend to a lesser degree in LECs and  
BECs (Fig. 8c).

In accordance with the results obtained by KEGG pathway ana-
lysis, we found that 12 h FRCs and BECs had upregulated expression  
of many components of the MHC class II presentation pathway, 
including chains of MHC class II molecules (H2-Aα, H2-Aβ1  
and H2-Eβ1), the invariant chain (CD74), CTSS, H2-DMα and 
H2-DMβ2 (Fig. 8c). Furthermore, 12 h FRCs also had signi-
ficantly higher expression of LGMN (Fig. 8c). By flow cytometry,  
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we investigated the surface expression of MHC class II on SLN 
FRCs, LECs, BECs and DNCs isolated from mice 18 h after injec-
tion of lipopolysaccharide and ovalbumin (Fig. 8d,e). After treat-
ment, surface expression of MHC II was significantly higher 
on FRCs, LECs and BECs but not on DNCs. Consistent with the  
microarray data, FRCs and BECs demonstrated larger increases in 
MHC class II expression than did LECs (Fig. 8d,e).

LCN2 is a multifaceted, lipopolysaccharide-inducible molecule that 
has been linked to host defense against Escherichia coli, Klebsiella 
pneumoniae and Mycobacterium tuberculosis32. Given the substan-
tially higher expression of LCN2 by FRCs, LECs and BECs after 
treatment (17.5-fold, 3.5-fold and 4.8-fold higher, respectively),  

we obtained SLNs from untreated mice and from mice 18 h after injec-
tion of lipopolysaccharide and ovalbumin and stained sections from 
these tissues with anti-LCN2, anti-desmin (to identify FRCs), anti-
LYVE-1 (to identify LECs) and anti-pNAd (to identify BECs; Fig. 8f). 
In contrast to FRCs, LECs and BECs in SLN sections from untreated 
mice, all three stromal subsets had detectable expression of LCN2  
18 h after treatment (Fig. 8f). In agreement with published reports32, 
we detected LCN2 in desmin-negative, LYVE-1− and pNAd− cells; 
these were probably of hematopoietic origin (data not shown). These 
data reinforced the idea that LNSCs are poised to respond to inflam-
matory or infectious triggers and may contribute as active participants 
during ongoing immune responses.
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DISCUSSION
The lymph-node conduit network is a complex molecular sieve that rap-
idly delivers low-molecular-weight lymph-borne molecules deep into the 
cortex9. This unique ability to exclude molecules by size is key to conduit 
function, yet its molecular basis is poorly understood. Our delineation 
here of the expression of ECM components by FRCs has identified a 
potential mechanism for regulating conduit structure and function.

We found that in addition to containing collagen I, which assembles  
into long fibrillar chains, providing tensile strength, the collagen core 
contained collagen XIV, which crosslinks collagen I, limiting fibril 
diameter by preventing lateral binding of adjacent fibrils34. The SLRP 
decorin, which also has high expression in the conduit core, is another 
key regulator of fibril diameter35. Finally, LOX covalently crosslinks 
 collagen I–collagen XIV bonds, locking the low-diameter arrange-
ment36. Macromolecular diffusion studies have reported that collagen 
fibrils have pore-like permeability dependent on tertiary and quaternary 
structure37. Tight regulation of fibril diameter and packing conceivably 
control pore size; dysregulation could impair the delivery of small mol-
ecules to the lymph-node parenchyma and alter the structural integrity 
of the network. We suggest that the exclusion of molecules by size in 
conduits is a property of the type I collagen core tightly regulated by 
collagen XIV and SLRPs. Future studies should define the roles of these 
factors in regulating fibril density and diameter in lymph nodes.

The transcriptional profiles of LNSCs suggested that these cells may 
be poised to respond to lymph-borne infectious or inflammatory cues. 

Although LNSCs lacked transcripts for NALP3, part of the inflam-
masome that recognizes influenza and adenovirus38, FRCs and DNCs 
produced more transcripts for the interferon-inducible transmembrane 
protein IFITM-1 than did other populations profiled. Furthermore, 
LNSCs had higher expression of IFITM-2 and IFITM-3 than did hemato-
poietic cells. IFITM-1, IFITM-2 and IFITM-3 have been linked to host 
defense against influenza virus, West Nile virus and Dengue virus39. 
Ligation of TLR3, another virus-recognition receptor, results in less 
activation of T cells by FRCs6. Exposure of LNSCs to infectious agents 
is hypothesized to preserve lymph-node architecture by promoting 
stromal resistance to destruction mediated by the immune system6,40.

We found that FRCs, LECs and BECs, all of which express TLR4 in 
the steady state, responded vigorously to the onset of inflammation by 
upregulating expression of interferon-and/or TLR4-inducible genes, 
as well as genes encoding molecules that regulate these pathways, 
molecules involved in the acute-phase response, the inflammatory  
chemokines CCL5 and CXCL9, and key components of the MHC class II 
antigen-processing and antigen-presentation pathway. Notably, expres-
sion of various chains of MHC class II molecules (H2-Aα, H2-Aβ1  
and H2-Eβ1), the invariant chain (CD74), CTSS, H2-DMα and H2-
DMβ2 was higher in FRCs and BECs after the onset of inflamma-
tion. FRCs also upregulated LGMN. Surface expression of MHC II 
was indeed higher on FRCs, LECs and BECs 18 h after injection of 
lipopolysaccharide and ovalbumin, whereas its expression remained 
unchanged on DNCs. The presentation of antigens by LNSCs via 
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MHC class II may contribute to the induction of CD4+ T cell toler-
ance or the generation of regulatory T cells in inflammatory settings or 
during chronic immune responses. Future studies should elucidate the 
role of the MHC class II antigen-processing and antigen-presentation 
pathway in LNSCs under inflammatory conditions. We also found 
that FRCs, LECs and BECs produced LCN2, a potent antimicrobial 
iron-sequestering molecule32, after the onset of inflammation. The 
secretion of LCN2 by LNSCs may limit bacterial expansion during 
early stages of infection by decreasing the availability of iron32.

Although FRCs are residents of secondary lymphoid organs, simi-
larly specialized fibroblasts appear at sites of chronic inflammation 
(tertiary lymphoid organs) and in tumors, where they support lymph 
node–like environments13,14. These FRC-like cells are often associ-
ated with poor clinical outcomes13,14. Controlling the development of 
tertiary lymphoid organs is therefore an important therapeutic aim; 
however, fibroblastic populations from various tissues have not been 
systematically compared. We examined the transcriptomes of FRCs, 
ThFs and SFs to study the specialization of fibroblasts in lymphoid 
organs. Despite sharing many characteristics, each population had a 
distinctive profile. Both FRCs and ThFs were better equipped than SFs 
for antigen presentation and contractility. Exposure to immune media-
tors and lymph flow41 probably regulates the FRC transcriptome. FRCs 
uniquely showed enrichment for higher expression of genes encoding 
molecules involved in cytokine–cytokine receptor interactions, which 
further demonstrated immune-related specialization.

In contrast to interstitial fibroblasts, FRCs interact closely with 
each other along the conduits that they ensheath42; however, little 
is known about these cell-cell contacts. We found that cadherin-11 
localized to junctions between FRCs. We also observed transcripts 
for cadherin-11 in ThFs and SFs, which reflected a common mesen-
chymal origin. Upregulation of cadherin-11 is associated with more 
division, adhesion, bone infiltration and production of inflammatory 
cytokines and altered production of ECM by fibroblast-like synovio-
cytes in rheumatoid arthritis26,43. Future studies should determine 
whether cadherin-11 signaling in FRCs regulates similar processes.

LNSCs interact closely with hematopoietic cells. Accordingly, we 
examined lymph-node stromal and hematopoietic niches for previ-
ously undescribed aspects of crosstalk. A notable finding was shared 
stromal expression of many genes thought to be subset restricted. 
FRCs and, to a lesser extent, DNCs produced transcripts for cytokines 
and chemokines that may act on memory T cells, DCs, B cells, 
macrophages and natural killer cells, which probably contributes to 
their recruitment, organization and survival. FRCs had the highest 
 expression of transcripts for Flt3L among the stromal and hematopoi-
etic subsets profiled, which suggested a previously unknown role for 
FRCs in maintaining lymph node–resident DCs, similar to thymic 
stroma44. Meanwhile, CCL20 expression by LECs may contribute to 
the steady-state egress of memory T cells or B cells. Although FRCs 
produced substantial quantities of transcripts for CCL19 and CCL21a, 
as reported before2, we observed lower expression in other LNSCs. 
In addition, both FRCs and LECs transcribed the gene encoding  
IL-7, in contrast to published reports2. Furthermore, FRCs, BECs and 
DNCs had high expression of the homeostatic chemokine CXCL12. 
Unexpectedly, we observed CXCL13 expression in FRCs. Microscopy 
confirmed localization of CXCL13 to B cell follicles, where rare FRCs 
ensheath sparse conduits45. We found that 11.6% ± 8.2% of areas with 
bright CXCL13 were associated with desmin-positive FRCs surround-
ing ER-TR7+ conduits (data not shown), which suggested that FRCs 
in the B cell zone may form a discrete CXCL13-expressing subset. 
Alternatively, FRCs in the T cell zone may also produce CXCL13 
transcripts, but protein synthesis may be tightly regulated.

Notably, our data suggested that FRCs contribute to the mainte-
nance of ECs. In addition to confirming FRC expression of VEGF-A20, 
our analysis showed FRC-restricted expression of transcripts for other 
angiogenic and lymph-angiogenic molecules, including GREM1, 
VEGF-C and HGF46, whereas FRCs, LECs and DNCs shared expres-
sion of ANGPTL4. Notably, BECs and LECs produced transcripts for 
the relevant receptors. Thus, it is likely that in addition to regulating 
the homeostasis of cells of hematopoietic origin, FRCs promote the 
survival and proliferation of ECs.

Little is known about the DNC niche. DNCs most closely resembled 
FRCs in terms of global gene expression and production of cytokines, 
chemokines and growth factors. DNC-specific probes showed enrich-
ment for molecules involved in contractile function relative to those 
of FRCs, and cultured DNCs formed elongated networks that strongly 
contracted three-dimensional collagen matrices. In vivo, we found 
that ITGA7 was an effective surface marker for >50% of DNCs, sub-
sequently identified as highly contractile cells that we called IAPs. 
Further studies are needed to elucidate any developmental relation-
ship between IAPs and FRCs and whether IAP-ensheathed vessels 
demonstrate functional specialization.

Here we aimed to provide the first comparative transcriptome 
analysis of lymphoid organ stroma. Our data simultaneously sup-
ported and extended published findings while providing ready access 
to a comprehensive database of molecular determinants expressed by 
LNSCs. By comparison of stromal data with data gathered for hemato-
poietic cells, plausible webs of interaction became apparent. As an 
immunological resource, this expression-patterning analysis suggests 
that LNSCs are closely involved in many facets of immune regula-
tion, structural support and stromal-cell homeostasis, which provides  
supportive data for many new avenues of study.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureimmunology/.

Accession codes. GEO: ImmGen raw data (stromal and hematopoi-
etic), GSE15907.

Note: Supplementary information is available on the Nature Immunology website.
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ONLINE METHODS
Mice. According to standard operating protocols of the ImmGen Project, all 
mice used were 6-week-old male C57BL/6 mice from the Jackson Laboratory, 
shipped 1 week before use and maintained under specific pathogen–free con-
ditions. OT-I mice deficient in recombination-activating gene 2 (Taconic) 
were bred at the Dana-Farber Cancer Institute. Mice were cared for under 
institutional and US National Institutes of Health guidelines. Experiments 
received approval from the Research Animal Care subcommittee at the Dana-
Farber Cancer Institute.

Induction of inflammation. OT-I T cells (1.5 × 106) were transferred intra-
venously to C57BL/6 mice. Then, 18 h later, mice received intravenous 
injection of 30 µg lipopolysaccharide from E. coli (serotype 0127:B8; L3129; 
Sigma-Aldrich) and 500 µg ovalbumin (A5503; Sigma-Aldrich). SLNs were 
collected 12 h after injection for sorting of FRCs, LECs and BECs for micro-
array analysis. SLNs were collected 18 h after injection for analysis of the 
expression of MHC class II and LCN2 protein.

Antibodies and conjugates. The following antibodies and stains were used: 
anti-CD45 (30-F11; Biolegend), anti-Ter119 (Ter119; Biolegend), anti-CD31 
(MEC13.3; Biolegend), anti-gp38 (8.1.1; purified in-house from a hybridoma 
from the Developmental Studies Hybridoma Bank), anti-CD140a (APA5; eBio-
science), anti-MAdCAM-1 (MECA-367; eBioscience), anti-cadherin-11 (13C2 
and isotype-matched control antibody MOPC21; M.B.), anti–mouse I-A and  
I-E (M5/114.15.2; Biolegend), anti–mouse CD44 (IM7; eBioscience), polyclonal 
anti–collagen VI (ab6588; Abcam), polyclonal anti–collagen XIV (M. Koch),  
anti-vitronectin (ab28023; Abcam), ER-TR7 (ab51824; Abcam), anti–α- 
smooth muscle actin (1A4; Sigma-Aldrich), anti-ITGA7-FITC (3349908; R&D 
Systems), anti-CNN1 (EP7984; Epitomics), polyclonal anti-fibromodulin  
(batch LF-150; L. Fisher), polyclonal–anti-mouse-decorin (batch LF-113; 
L. Fisher47), polyclonal-anti-mouse-biglycan (batch LF-159; L. Fisher47), 
polyclonal-anti-desmin (ab15200; Abcam), anti-pNAd–biotin (MECA-79; 
Biolegend), anti-LYVE-1–Alexa Fluor 488 (ALY7; eBioscience), polyclonal 
anti-LCN2 (AF1857; R&D Systems), anti–hamster immunoglobulin G  
(IgG)–Alexa Fluor 488 (A-21110; Invitrogen), anti–rat IgG–Alexa Fluor 647 
(A-21247; Invitrogen), anti–rabbit IgG–Alexa Fluor 488 (A-11034; Invitrogen), 
anti-rabbit IgG–Alexa Fluor 647 (A-31573; Invitrogen), anti–rabbit IgG–Alexa 
Fluor 555 (A-31572; Invitrogen), anti–goat IgG–Alexa Fluor 488 (A-11055; 
Invitrogen), anti–goat IgG–biotin (A-10518; Invitrogen), anti–mouse IgG1–
biotin (550331; BD), anti–mouse IgG–Alexa Fluor 488 (A-11029; Invitrogen), 
polyclonal anti–mouse ADAM10 (AB946; R&D), DAPI (D3571; Invitrogen), 
TRITC-phalloidin (R415, Invitrogen), streptavidin–Alexa Fluor 555 (S-32355; 
Invitrogen) and streptavidin–Alexa Fluor A488 (S-32354; Invitrogen).

Cell enrichment and sorting. Cells were prepared according to standard 
operating protocols of the ImmGen Project. Skin-draining lymph nodes 
(inguinal, axillary and brachial) and mesenteric lymph nodes were isolated 
from C57BL/6 mice (n = 10–30), then were digested, enriched for CD45− 
stroma and sorted as described6,48. For skin fibroblasts, mouse ears (n = 5 mice 
per group) were placed in ice cold RPMI medium, 2% FBS, then were split and 
sliced with a razor blade and digested as described6. Red blood cells were lysed  
(140 mM NH4Cl and 17 mM Tris-base, pH 7.4) and cells were stained and sorted 
(single round of sorting) directly into TRIzol with a FACSAria (100-µm nozzle;  
20 psi). Dead cells were excluded with propidium iodide (5 ng/ml). Purity was 
assessed by sorting of cells into flow cytometry buffer (2% FBS, 2 mM EDTA 
and PBS) followed by immediate analysis of samples with a FACSAria. RNA 
was isolated as described49.

Microarray hybridization and data normalization. Isolated RNA was ampli-
fied and prepared for hybridization to the Affymetrix MoGene 1.0 ST array 
with the GeneChip Whole Transcript (WT) Sense Target Labeling Assay in 
accordance with manufacturer’s instructions. Raw data were normalized with 
the robust multichip average algorithm in the ExpressionFileCreator module 
of the GenePattern genomic analysis platform.

Expression value probabilities. Thresholds for likelihood of positive gene 
expression were determined from the distribution of expression across the 

microarrays. Because the ST1.0 arrays do not contain reliable negative con-
trols, a Gaussian mixture model was used to determine probabilistic thresholds 
of expression, an approach initially confirmed by comparison of parallel data 
sets obtained from the same RNA from B lymphocytes and T lymphocytes49. 
Probabilities of components in the model were combined to arrive at a single 
probability of expression. Thresholds were calculated for each sample, and 
the distribution of cutoffs was examined to determine whether a single value 
could be applied to all samples from the ImmGen Project. An expression value 
of 120 after normalization, which corresponds to a 95% probability of expres-
sion, was used as the standard cutoff for gene expression for most populations 
from the ImmGen Project.

Population distance measurements. PCA was done on expressed probes with 
the ImmGen Population PCA Plot module for GenePattern. PCA simplifies 
complex, multidimensional data into principal components. Each principal 
component is uncorrelated with earlier principal components to account for 
maximal variability among populations. This module identified and used the 
15% of probes with the greatest difference in expression across populations 
for PCA. PCA used log2-transformed and row- and column-normalized data. 
The 15% most variable probes were identified in an unsupervised manner: 
for all expressed probes (EV > 120 for any subset), the module uses replicate 
values to compute the standard deviation within each population and averages 
these values to generate a single standard deviation value that reflects vari-
ability within each cell type (s.d. within), and uses mean expression values to 
calculate a single standard deviation across all cell populations (s.d. across). 
Probes were ranked according to the following ratio: s.d. across/s.d. within. 
Probes with the highest ratios were determined to be the most variable, and the 
top 15% of these were used. The first three principal components were used as 
coordinate-axes onto which samples were projected. Pearson correlation coeffi-
cients and Euclidean distances were calculated with the same probes. Data was 
log2 transformed and row standardized. Correlation and distance values were 
computed with R software (the R project for statistical computing). Heat maps 
were generated with the HeatMapImage module of GenePattern.

Hierarchical clustering analysis. With the Multiplot module of GenePattern, 
probes with different expression were identified (FC > 2 in at least one pair-wise 
population comparison; EV > 120 for at least one population), then clustered 
(Pearson’s correlation and average linkage) with the HierarchicalClustering 
module of GenePattern. Data were log2 transformed, row centered and row 
normalized, then visualized with the HierarchicalClusteringViewer module 
of GenePattern.

Stromal gene-signature determination (delta-score analysis). The ImmGen 
Project Delta Score module for GenePattern was used to identify stromal 
cell–specific signatures in a pair-wise manner. For two populations, a and b, 
effective differences in expression were defined as follows: 

d m
m

s s( , ) loga b a

b
a b=







− +( )2
2

where µ and σ are the geometric mean and geometric standard deviation, 
respectively, of the two populations. The ratio in the first term represents 
the FC between the class means of a and b. This value was log2 transformed  
(so a power of 2 corresponds to FC). FC values are penalized for noise within 
replicates by subtraction of the square of the sum of the geometric standard 
deviation of both populations. The resulting delta score (δ) reflects noise-
adjusted differences between the two populations. A δ of 1 corresponds to 
an adjusted FC of ≥2, a δ of 2 corresponds to an adjusted FC of ≥4 and so on. 
Lists of probes with differences in expression were combined for subsequent 
analysis by Excel.

Probes subsequently identified as having significantly different expression 
(P < 0.05; t-test) were used (Multiplot module of GenePattern).

Analysis of functional enrichment in gene signatures. Population-specific 
lists were analyzed with the Functional Annotation Tool of DAVID16. Lists 
were uploaded as official gene symbols for Mus musculus. The background 
was set to the MoGene-1_0-st-v-1 chip. In the Pathways option, the KEGG_
Pathway chart was selected. Count requirements for genes were set as 0 and 
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the EASE score was set as 1. Top-ranked or biologically significant ‘hits’  
are presented with P values corrected by the multiple-hypothesis test 
(Benjamini procedure).

Other general microarray analysis details. For bar graphs and heat maps of 
genes with multiple probes, a single representative probe (the probe closest to 
the mean in Euclidean distance) was used for visualization.

Immunofluorescence microscopy. Lymph nodes were snap-frozen in opti-
mum cutting temperature compound. For staining of ITGA7, CNN1 and 
LCN2, lymph nodes were fixed for 4 h in 4% paraformaldehyde and then 
overnight in 30% sucrose before being frozen. Sections 7.5 µm in thickness 
were cut and blocked with FcR block (2.4G2) and 2% BSA before being stained 
with primary and secondary antibodies. For staining of fibromodulin, sections 
were pretreated for 1 h at 37 °C with chondroitinase ABC (Sigma). For stain-
ing of cadherin-11 on cultured FRCs, 2.5 × 104 cells were plated overnight on 
coverslips coated with fibronectin (33016-015; Invitrogen). Cells were blocked 
as described above and incubated with primary antibodies. Cells were fixed 
with 4% PFA, permeablized with 0.2% Triton-X-100 (T-9284; Sigma) and then 
incubated with secondary conjugates. Sections were visualized with a laser-
scanning confocal microscope (Leica SP5X) and analyzed with ImageJ (NIH) 
and Adobe Photoshop CS.

Electron microscopy. Popliteal lymph nodes were prepared and analyzed  
as described50.

Flow cytometry. Lymph nodes were digested and stained as described6. For stain-
ing of cadherin-11, cells were prepared and stained in EDTA-free HEPES-buffered 
saline with 2% FBS and 1 mM CaCl2. Samples were acquired on a FACSCalibur or 
FACSAria (BD Biosciences) and analyzed with FlowJo v.8.7.3 software.

Contraction assay. C2C12 myoblasts and NIH3T3 fibroblasts were cultured 
until 70% confluent. FRCs from SLNs were cultured as described6. Cells  
(5 × 105) were suspended in 500 µl gel (1 mg/ml rat tail collagen I  
(BD Biosciences) in αMEM) and seeded into tubular constructs. Images  
were obtained with a Nikon camera and analyzed with ImageJ, and contraction 
was measured as the width of collagen matrix divided by total tube width.

RT-PCR. RNA extraction, cDNA preparation and PCR cycling conditions have 
all been described6. Primers (Integrated DNA Technologies) were as follows: 
CXCL13F, TGGCCAGCTGCCTCTCTC; and CXCL13R, TTGAAATCACT
CCAGAACACCTACA.

Statistics. Multiplot (GenePattern) was used for computation of t-test P values. 
For functional enrichment in gene lists, P values were corrected for multiple  
hypothesis testing with the Benjamini option of the DAVID Functional 
Annotation Tool. P values for the χ2 test with Yates’ correction were computed 
with GraphPad Prism 5. False-discovery-rate-adjusted P values were calculated 
with the ComparativeMarkerSelection module of GenePattern, which uses the 
Benjamini and Hochberg procedure.

47. Fisher, L.W., Stubbs, J.T. III & Young, M.F. Antisera and cDNA probes to human 
and certain animal model bone matrix noncollagenous proteins. Acta Orthop. Scand. 
Suppl. 266, 61–65 (1995).

48. Fletcher, A. et al. Reproducible isolation of lymph node stromal cells reveals site-
dependent differences in fibroblastic reticular cells. Front. Immunol. 2, 35 
(2011).

49. Painter, M.W., Davis, S., Hardy, R.R., Mathis, D. & Benoist, C. Transcriptomes of 
the B and T lineages compared by multiplatform microarray profiling. J. Immunol. 
186, 3047–3057 (2011).

50. Gonzalez, S.F. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 
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