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SUMMARY

A complete chart of cis-regulatory elements and
their dynamic activity is necessary to understand
the transcriptional basis of differentiation and func-
tion of an organ system. We generated matched
epigenome and transcriptome measurements in
86 primary cell types that span the mouse immune
system and its differentiation cascades. This
breadth of data enable variance components anal-
ysis that suggests that genes fall into two distinct
classes, controlled by either enhancer- or pro-
moter-driven logic, and multiple regression that
connects genes to the enhancers that regulate
them. Relating transcription factor (TF) expression
to the genome-wide accessibility of their binding
motifs classifies them as predominantly openers
or closers of local chromatin accessibility, pin-
pointing specific cis-regulatory elements where
binding of given TFs is likely functionally rele-
vant, validated by chromatin immunoprecipitation
sequencing (ChIP-seq). Overall, this cis-regulatory
atlas provides a trove of information on transcrip-
tional regulation through immune differentiation
and a foundational scaffold to define key regulatory
events throughout the immunological genome.
INTRODUCTION

The establishment and maintenance of a cell’s transcriptional

identity is largely driven by the specific activity of cis-regulatory

elements: promoters at which initiation complexes are assem-

bled around RNA polymerase II (Pol-II), or distal enhancer ele-

ments that facilitate Pol-II loading and/or release from poised

configuration. The time- and location-specific expression of a

gene in differentiated states results from the combined activity

of the several enhancers that control it, each of which may

have a different regulatory logic, driven by the combinatorial ac-

tivity of transcription factors (TFs) and chromatin remodelers.

How enhancer activity is coordinated and integrated to define

related, but functionally distinct, cell types remains elusive, leav-

ing two main questions: How do cis-regulatory landscapes vary

between lineage-related cell types to promote cellular identity?

How do changes in the activity of cis-regulatory elements pro-

gram the differentiation cascade of cell lineages? Themouse im-

mune system represents an excellent setting to interrogate the

interplay between epigenome and transcription: major cell states

are well characterized, discrete cell populations can be readily

purified, and the differentiation from common progenitors is

well established, through pathways that can be parsed up to

ten successive steps (Hardy and Hayakawa, 2001; Rothenberg,

2014), such that it is possible to address these questions and

interrogate transitional stages at high granularity.

Previous large-scale efforts have profiled epigenomic differ-

ences across differentiation to reveal a highly diverse landscape
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of cis-regulatory element activity, point to master transcriptional

regulators and key cis-regulatory elements (ENCODE Project

Consortium, 2012; Roadmap Epigenomics Consortium et al.,

2015). However, these have primarily involved cell lines in cul-

ture, or whole organs that mask regulatory heterogeneity. Few

large-scale programs have systematically paired epigenomic

maps with gene expression measurements from primary cells,

restricting the ability to infer the impact of epigenomic changes

to functional consequences in gene expression. Other studies

have focused on well-defined groups of cells ex vivo (Lavin

et al., 2014; Yu et al., 2017) or run broader surveys of hematopoi-

etic differentiation (Lara-Astiaso et al., 2014), but a cis-regulatory

analysis that is both wide-ranging and fine-grained has not been

carried out.

Here, we use low input epigenomic and transcriptomic

profiling to generate matched measurements in 86 unique im-

mune cell populations that span the entire immune system of

themouse, from granulocytes to terminally differentiated plasma

cells. This atlas of open chromatin regions (OCR) is both compre-

hensive, defining the cis-regulatory space in the quasi-entirety of

immunocytes, and highly granular by scanning closely related

cell types. This breadth and unique coherence of these data al-

lows us to infer the activity of cis-regulatory elements, assign

to many TFs specific locations in shaping the unique transcrip-

tome of each cell type, and reveal generally applicable insights

on the relative roles of promoters and enhancers in differentiated

gene expression.

RESULTS

We generated matched assay for transposase-accessible chro-

matin using sequencing (ATAC-seq) and RNA sequencing (RNA-

seq) data for 86 immune cell populations, representing lymphoid

and myeloid hematopoietic lineages, along with key stromal cell

populations (Figure 1A; Table S1). Lymphocytes included very

granular differentiation cascades along the T and B lineages,

and myeloid cells included neutrophil (GN), macrophage (MF),

monocyte (Mo), and dendritic cell (DC) populations stemming

from either embryonic yolk sac or adult bone marrow precursors

and sampled from different tissues (Guilliams et al., 2014). These

cells were purified across 11 ImmGen participating laboratories,

in biological duplicates (Table S1; Figure S1; http://www.

immgen.org/ATAC.Sort2017.pdf).

The sorted cells were jointly processed for expression profiling

by low-input RNA-seq and for chromatin accessibility analysis

by fast-ATAC-seq (Corces et al., 2016), a simplified version of

the original protocol (Buenrostro et al., 2013) that increases the

proportion of reads within OCRs and allows lower cell inputs
Figure 1. Overview for the Chromatin and RNA Profiling of Broad Imm

(A) Cell types in this study shown in a differentiation tree, color-coded by lineag

cursors, are shown unconnected to the HSC-derived tree.

(B) Representative pile-up traces of ATAC-seq signals, all to the same scale, for

enhancer elements shown (E8I to E8VI, top, red arrows denote novel OCRs in cDC

by bar plots at the right of each locus. Asterisk (*) indicates no matching RNA-se

(C) A t-SNE representation of all OCRs identified in this study. Top: the Gini index c

Middle: OCRs specifically open in progenitors or dendritic cells. Bottom: OCRs

See also Figure S1 and Tables S1 and S2.
(10,000 cells), important here given the rarity of many immune

cell types (transitional stem or progenitor cell stages or innate-

like lymphocytes [ILCs] could be analyzed). Rigorous quality

control steps ensured data homogeneity (thresholds on mapped

paired ends, on the enrichment of readsmapping to transcription

start sites, and on depth-adjusted inter-replicate correlation). We

obtained high quality ATAC-seq profiles for 86 cell types (Table

S1; only mast cells failed, likely from interference by heparin).

To determine the full atlas of open chromatin across the immune

system, we first called OCRs in individual datasets with usual

thresholds (MACS false discovery rate [FDR] 0.01), supple-

mented by additional OCRs identified by merging reads from

related cell types. We thus identified 512,595 OCRs (FDR

0.01), whose activity index was normalized across cell types

by quantile normalization (Table S2). We then parsed 14,292

OCRs connected to transcriptional start sites (TSS, RefSeq)

versus 498,303 mapping to more distal locations (hereafter

‘‘distal enhancers’’ [DE], acknowledging that not all are neces-

sarily true enhancers in the functional sense).

The results, a virtually complete perspective on accessible

chromatin across immune lineages, present a fascinating

portrait of enhancer and promoter activity (Figure 1, ImmGen

Chromatin data browser). Several match known immunogenom-

ics, but others were novel and unexpected. For example, many

of the OCRs detected in the Cd8 locus correspond to (and

help position) the enhancer elements mapped in classic studies

of T cell differentiation (Issuree et al., 2017): some OCRs are

active prior to transcription (E-8II), others only in mature CD8+

T cells (E8-VI) (Figure 1B). We also identified previously unknown

elements: Cd8 expression in DCs coincides with a novel OCR

specific to CD8+ classic DCs (cDCs) and another solely active

in plasmacytoid DCs (pDCs) (Figure 1B). The difference in regu-

latory strategies among DCs was also visible in many other loci,

e.g., the defining Itgax locus (encodes CD11c; Figure S2).

Another example was the activity of the Spi1 enhancer (encodes

PU.1), which extinguished as expected at the DN2a-DN2b

transition, coincident with commitment to T cell fate (Yui and

Rothenberg, 2014)

To visualize the genome-wide diversity of OCR activity across

immune cell-types, we used a T-distributed stochastic neighbor

embedding (tSNE) algorithm to project every OCR into a two-

dimensional space, revealing distinct substructures in the data

and its variability (Gini index, Figure 1C). OCRs particularly active

in a lineage naturally tended to cluster, as shown for progenitors

and DCs. Interestingly, many of the OCRs mapping to TSS re-

gions clustered together in an eccentric region of low variability,

suggesting a degree of conformity within promoters as a group

(many others did scatter throughout, though, denoting some
une Cell Populations

e. Stromal cells and myeloid cell types, known to derive from embryonic pre-

three genomic regions: Spi1 (encodes PU.1), Cd8, with previously determined

s), and the Hprt promoter as a housekeeping gene. mRNA levels are indicated

q data.

haracterizes OCRs that are broadly accessible (blue) or cell-type-specific (red).

at TSS or that contain CTCF motifs.
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A

B C

Figure 2. Integrated ATAC-RNA Variance Decomposition: Parsing Enhancer Influence

(A) Matrices of Pearson correlation between cell types, based on ATAC signal intensity at all TSS-OCR, all DE OCRs, or mRNA levels in RNA-seq. Color-coding of

cell types at right per Figure 1A.

(B) Variance component decomposition of the mRNA expression for every gene (as column), in a variance component model that discretizes the explanatory

power of DE- or TSS-OCRs (blue and green, respectively), the proportion of unexplained variance being shown in red.

(C) Enrichment in TF-binding sequence motifs (signed -log10 p, Fisher test) in the promoter-proximal region (�1,000 to +1 bp) of genes with DE-logic and TSS-

logic determinism (from B).

See also Figure S2 and Table S3.
cell type specificity). As detailed below, wemapped the TF bind-

ing motifs associated with each OCR. OCRs associated with the

structural factor CTCF, an essential anchor of chromatin loops,

mapped homogeneously to a central region of limited variability.

This pattern is consistent with the notion that topological do-

mains and loops are conserved between cell lineages, even if

their transcriptional activity differs (Dixon et al., 2016; Hnisz

et al., 2016).

Expression Variance Explained by Chromatin
Accessibility
Our extensive data provide an opportunity to determine, on a

large scale, the relationship between chromatin accessibility

and gene expression. In keeping with previous reports (Corces

et al., 2016), cell-cell correlation matrices computed from chro-
900 Cell 176, 897–912, February 7, 2019
matin accessibility at DE OCRs yielded sharper distinctions be-

tween differentiated cell types than those drawn from expression

profiles (Figure 2A). Furthermore, DE OCRs showed more

discrimination between cell types than TSS OCRs, consistent

with the isolation and limited variance of TSS OCRs on the

tSNE plots (Figure 1C).

Packaging and accessibility of DNA in chromatin are the first

level of control on gene expression in differentiated cells, setting

patterns that are secondarily modified by splicing or differential

mRNA stability. We sought to determine how much differences

in chromatin accessibility can explain differences in expression

of individual genes. Variance component models, such as those

used in genome-wide association and expression quantitative

trait loci (eQTL) studies (Chen et al., 2016; Ye et al., 2014),

can identify quantitative variables associated with relatedness



between observations by explicitly modeling sample covariance

as randomeffects. Here, we applied an analogous concept using

variance component models to quantify the proportion of varia-

tion in gene expression that could be attributed to covariance in

chromatin accessibility. For each of the 15,600 expressed

genes, we fit a set of variance components models, including

both TSSOCR covariance and DEOCR covariance in themodel,

to attribute the expression levels variance of each gene to either

promoter or enhancer covariance patterns. For clarification,

these relationships are not between a gene and the accessibility

of its own promoter or enhancers, but to the overall status of all

enhancers or promoters. For most the genes, more than 90% of

the expression variation could be explained, confirming that

gene expression generally follows chromatin accessibility (Fig-

ure S3A; Table S3A). These results were robust with respect to

the number of OCRs used in computing covariance matrices,

as assessed by iterative downsampling of the OCR sets (Fig-

ure S3B). Strikingly, this analysis revealed two distinct groups

of genes (Figure 2B): one for whom >99.0% of the expression

variance could be best explained by TSS OCR covariance (943

genes, including Cdca3 and Hprt) and a larger group (4,409

genes, including known lineage specifying genes like Pax5 or

Foxp3) best explained by DE OCR covariance (DE OCRs map-

ping to gene bodies or to extragenic regions behaved identi-

cally). This observation suggests a dichotomy between sets of

active genes, whose expression follows an ‘‘enhancer logic’’ or

a ‘‘promoter logic.’’ These sets differed significantly in their range

and variability of expression (higher and less variable for the

TSS-logic set) but not in GC content (Figure S3C), with a surfeit

of housekeeping and cell cycle-related genes in the TSS-logic

group (Tables S3B–S3D).

This dichotomy suggested fundamentally different modes of

transcriptional regulation, and we hypothesized that these

groups may coopt different sets of TFs. We compared the

enrichment of TF-binding motifs in the �1 kb > TSS region of

the two gene sets (a span that would encompass the promoter

and some proximal enhancers). Members of the ETS-ELK family

were more associated with TSS-logic genes, while members of

the KLF family were over-represented in the promoters of genes

of the DE-logic group (Figure 2C; Table S3E). Altogether, these

results suggest that gene expression in differentiated mouse im-

munocytes is cued by global patterns of chromatin covariation

but follows two different modes.

cis Regulation of Gene Expression: Linking Enhancers
to Genes
One of the recurring difficulties in mapping enhancer elements is

in establishing the link between a regulatory element and the

gene(s) it regulates. Although enhancers often map inside or

within a few kb of genes they regulate, and ‘‘closest gene’’ is

often taken as a rough proxy to hypothesize an enhancer’s

target, there are documented instances of enhancers mapping

megabases away from their target gene (Bahr et al., 2018). We

hypothesized that correlation across cell types between the

accessibility of an enhancer and the expression of a given

gene denotes a functional connection, a determination facili-

tated by the unique breadth and granularity of the present

data. For illustration, such a correlation could be detected be-
tween the expression of Samd3 and accessibility of an OCR

located 1,320 bp upstream of its TSS (Figure 3A). This correlation

extended genome-wide (Figure 3B; Table S3F). By globally as-

sessing correlation between accessibility and expression, we

identified at least one significantly associated cis OCR within a

1 Mb window from the TSS for 7,444 of the 15,601 expressed

genes (Bonferroni p < 0.05). Predictably, the remaining genes

that were not associated with a cis OCR were enriched in the

set of TSS logic genes identified above (p < 10�20). These corre-

lated OCRs preferentially mapped in the close vicinity of the

correlated gene (50% of best correlated OCRs are within 13 kb

of the gene’s TSS), in essence vindicating the usual approach,

with an exponentially decaying relationship between distance

and correlation (Figure 3C). Given this observation, to reduce

the number of spurious associations, we restricted our further

analysis to 334,879 OCRs that fall within 100 kb of some TSS.

In many instances, each gene was associated with several

significantly correlated cis OCRs (Figure 3D), including some

highly complex regions with multiple associations such as the

Il7r locus, correlated to 21 nearby OCRs (Figure 3E). For these

genes with multiple correlated OCRs, the OCRs tended to be

correlated to each other (64% of the OCRs correlated with one

gene were themselves correlated [at Bonferroni p < 0.05]). These

multiple OCRs likely represent repeated regions that operate

with the same regulatory controls.

In other instances, genes were surrounded by OCRs with

clearly different patterns of activity. An anecdotal but striking

example was noted upstream of Rag1-Rag2, where two distinct

OCRs are activated in tight connection with the appearance of

Rag transcripts in either B or T cells (Figure 3F), suggesting

that T and B lineages have different solutions to tightly con-

trol B or T expression. We thus sought to broadly identify sets

of independent OCRs for each target gene, using the ability of

stepwise regression to identify independent explanatory vari-

ables. For a substantial number of genes (n = 493), two or

more independent signals were identified in the 100 kb regions

(Figure S3D; Table S3G). These ‘‘secondary’’ OCRs may contain

cell-specific regulatory elements to fine tune expression in

different lineages. For example, in the Tyrobp locus (encodes

DAP12), the regression identified a second OCR associated

with expression in the B cell lineage, and a third active in natural

killer (NK) cells (Figure 3G). Around Cd28, an OCR whose range

of activity includes plasma cells (likely related to CD28 function

there) (Delogu et al., 2006) is complemented by another OCR

uniquely active in T cells (Figure 3H).

Timing of OCR Activation during Lymphocyte
Differentiation
We then investigated more closely the changes in OCR activity

that accompany T and B lymphocyte differentiation, attempting

to track changes in regulatory elements that underlie thesemulti-

step cascades. At the two main cell-specific loci in the T lineage,

Cd4 and Cd8, classic analyses have mapped a number of func-

tionally important enhancer elements (Issuree et al., 2017). As

noted above, several of the OCRs at the Cd8 locus showed ac-

tivity in the differentiation series prior to the appearance of Cd8a

transcripts (i.e., E8-I and E8-II in DN3 and DN4). OCRs were also

found at several known enhancer elements of Cd4, with the
Cell 176, 897–912, February 7, 2019 901
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expected timing of activation (e.g., E4T, E4p, and E4D) (Issuree

et al., 2017) (Figure S4A). The S4 silencer was accessible

in mature CD8+ T cells, indicating that silencing here is

likely an ongoing process. Several hitherto unrecognized ele-

ments were also observed (Figure S4A), whose function begs

to be elucidated: an OCR very close to the S4 silencer and

specifically active in CD4+ cells and several OCRs active in

cDC or pDCs.

To consider more generally how OCR opening relates to

changing gene expression, we selected a broad set of tran-

scripts that are stably induced or extinguished during T differen-

tiation, most at the point of T cell fate commitment (DN2a/DN2b)

(Yui and Rothenberg, 2014), or at CD4+CD8+ ‘‘double-positives’’

(DPs) (Figure 4A). Aggregating DE OCR accessibility in a 10 kb

window around the TSS (but excluding TSS OCRs and constitu-

tively accessible DE OCRs) showed that this aggregate accessi-

bility largely tracked with gene expression (Figure 4B); in

contrast, there was little relation with accessibility at these

genes’ TSS (not shown). Thus, the T cell differentiation cascade

also seems to follow an enhancer-driven logic, rather than a

TSS-driven one. Bolstering the significance of these correlated

OCRs was that they showed significant enrichment in binding

motifs for TFs known to be involved in controlling T differentia-

tion (Figure S4B) such as Tcf12(HEB), Lef1, Tcf7(TCF-1), and

Tcf3(E2A).

We then investigated the dynamics of OCR activation, asking

whether the early enhancer activation relative to transcription

observed with several Cd8 enhancers is a general rule. We

compared the differentiation stage at which a given gene’s

mRNA level, or the accessibility at its most correlated OCR,

reach 50% of their maxima (and conversely drop to 50% or their

initial max for repressed loci). Strongly skewed patterns were

observed, wherein OCRs mainly became open before the onset

of transcription (Figure 4C). Genes whose expression increased

sharply at the DP stage already had active enhancers after the

DN2a > DN2b transition, while activation of expression at the

time of positive selection to T4 single-positives was foretold by

activation of their enhancers in late DN stages. Thus, consistent

with prior observations in early B and myeloid differentiation

(Mercer et al., 2011), turning on enhancers precedes the actual

activation of the loci at several steps in T cell differentiation.

trans Regulation: TF Effects on Chromatin Accessibility
Paired epigenomic and transcriptomic data across a large set of

cell types provides a powerful opportunity to relate epigenomic
Figure 3. Landscape of cis-Regulation: Associating Genes with Specifi

(A) Example of correlated mRNA expression (x axis) and OCR accessibility (y ax

(B) As in (A), but correlation between expression and activity of a strongly assoc

(C) Distance distribution of DE-OCRs that are strongly correlated (Bonferroni p <

(D) Number of significantly associated DE-OCRs for each gene.

(E) Chromatin accessible landscape of the Il7r locus for all cell types (histogram

correlation with Il7r expression; non Il7r associations are shown in black (height

(F) ATAC-seq signal in the promoter and enhancer regions of Rag1 and Rag2 loc

hypersensitivity sites are indicated below. Asterisk (*) indicates newly identified O

(G and H) Identification by multiple regression of OCRs that complementarily ex

accessibility at these OCRs; the bar histogram denotes mRNA expression.

See also Figure S3 and Table S3.
variation to the activity of specific TFs, by correlating the activity

of an OCR to the TF binding sites (TFBS) it contains. To identify

cell- and lineage-specific TFs that may influence chromatin

accessibility, we first mapped TFBS present in each of the

334,879 robust OCRs (curated TFBS list from CisBP, per Schep

et al. [2017]; Table S4 for TF motifs associated to each OCR at

p < 0.1). We compared the aggregate accessibility in each cell

type of all OCRs containing a given motif, relative to a back-

ground set of OCRs matched in %GC and average accessibility

(Schep et al., 2017). This deviation analysis, which yields a

‘‘TFBS accessibility score’’ for each TF motif in each cell type,

identified 76 TF motifs significantly associated with chromatin

accessibility differences (Figure 5A).

TFs of the same family tend to bind the same or similar motifs

(e.g., Gata family members all bind the canonical Gata motif). To

disambiguate the relationship between the accessibility of a

motif and the actual TFs that binds it, we compared the TFBS

accessibility score to the expression of the corresponding TFs.

For some like Pax5, the key regulator of B cell differentiation,

there was a simple correlation between expression of the TF

and the accessibility of its motif (Figure 5B). For Tbx21 (encodes

T-Bet, Figure 5C) the relationship was less linear, the motif only

becoming accessible at the highest expression levels, possibly

denoting dose-dependence, cofactor requirement, or competi-

tive displacement effects. This analysis also identified several

repressive relationships: Pbx1, a negative regulator of stem

cell differentiation (Ficara et al., 2008), and Zbtb7b, the classic

repressor of the CD8-lineage transcriptome in CD4+ T cells

(Wang et al., 2008) both showed decreased accessibility of their

motif at higher TF expression (Figures 5D and 5E). In other cases,

by calculating the similarity of the TF motifs used, we defined

pairs of TFs that cooperate tomodulate the accessibility of target

enhancers. For instance, the hematopoietic regulator Bcl11a

correlated positively with accessibility of the Bcl11a motif, but

Bcl11b, which shuts down the B ormyeloid differentiation poten-

tial in early thymic progenitors, negatively correlated with acces-

sibility (Figure 5F).

Such correlations between accessibility and expression were

generalized to all TFs with associated TFBS accessibility scores

(Figure 5G), identifying 61 activators and 18 repressors (Table

S5) confirmed by permutation analysis (Figure S5A). The expres-

sion of these chromatin accessibility regulators (Figure 5H)

paints a uniquely rich portrait of immune cell differentiation,

with regulators that appear to act individually (Eomes, Pax5)

and are uniquely correlated to activity of OCRs that contain their
c Enhancers

is) at the Samd3 locus.

iated DE-OCR for 1,000 genes.

0.05) to a given gene, relative to the gene’s TSS.

of expression at right). Red arcs correspond to 21 OCRs that share significant

reflects association p value).

i in B and T precursors (right: mRNA expression). Previously reported DNase-I

CRs.

plain the expression patterns of (G) Tyrobp and (H) Cd28. Heatmaps denote
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BA

C

Figure 4. Timing of OCR Activation

(A) Heatmap representing expression of 496 genes

that vary most through T cell differentiation (ordered

by k-means, color-coded relative to the 95th

expression quantile).

(B) Integrated accessibility of variable DE-OCR in

the �10 kb > �250 bp region of these genes (order

as in A).

(C) Timing of enhancer activation: for genes that are

induced during T differentiation, the dots denote the

cell stage at which mRNA expression first reaches

50%ofmax (x axis) versus the stage at which the best

correlated OCR (from Figure 3) first reaches 50% of

max accessibility.

See also Figure S4.
motifs and regulators that operate interchangeably to regulate a

common motif such as Runx1/2/3, which all promote accessi-

bility of the Runx motif. Some TFs are expected to be refractory

to such an analysis and showed no such correlation: FoxP3

because of its binding to previously open elements (Samstein

et al., 2012), Nfatc1 because its regulation is based in intracel-

lular localization rather than abundance, and Stat1 because the

present dataset may poorly capture its rapid induction. With

this reservation, this integrated approach enabled us to define

some of the key TFs that positively or negatively shape chro-

matin accessibility in immune cells.
904 Cell 176, 897–912, February 7, 2019
Transcriptional Regulation in
Myeloid Cells
Havingbroadly characterized the trans reg-

ulatory relationships between TFs and

OCRs, we looked more specifically at

OCR activity patterns in the myeloid

compartment. Previous studies profiled

the epigenomic state of tissue resident

macrophages and other myeloid cells

(Bornstein et al., 2014; Lavin et al., 2014),

but the breadth of the present data pro-

vided additional perspective. Clustering of

myeloid cells based onOCRactivity group-

ed them largely according to lineage and

tissue residency (Figure 6A; Table S6).

There was differential OCR activity be-

tween resident macrophages of different

tissues, consistent with prior reports (Lavin

et al., 2014). GN and pDCs were more

distant from other myeloid lineages, some-

what unexpectedly for pDCs, as they are

closely related with cDCs (Reizis et al.,

2011). Indeed, pDCs had a high number of

distinctOCRs fromcDCsandothermyeloid

cells, and pDCsweremore similar to T cells

for Cd8 OCRs (Figure 1B), supporting the

proposition that pDCs arise from a spec-

trum of progenitors with myeloid and

lymphoid potential (Reizis et al., 2011).

A major question in myeloid biology is

what factors drive the programs of closely
related but functionally distinct cells. We used the TFBS

resource described above to identify motifs enriched in OCRs

uniquely active in certain cell types (Figure 6B). Several enriched

motifs corresponded to TFs with established roles. For example,

the binding motif for Tcf4 (encodes E2-2) was among the most

enriched in pDCs, and E2-2 has an essential role in pDC biology

(Cisse et al., 2008). Enrichment of critical tissue macrophage

regulators was apparent: Gata6 in peritoneal cavity (PC) macro-

phages (Rosas et al., 2014) and Mef2c in microglia (Deczkowska

et al., 2017; Lavin et al., 2014). These served as useful valida-

tions, we also noted a number of novel associations that may
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warrant further investigation: Bach1 in PCmacrophages, Egr2 in

alveolar macrophages, and Zeb1 in neutrophils. The motif for

Ehf, a gene with expression restricted mostly to cDCs and

epithelial cells (Figure S6A), was enriched in cDC-specific

OCRs. This gene has roles in the regulation of inflammation

and antigen transport in epithelial cells (Asai and Morrison,

2013; Fossum et al., 2017) and may have a similar function

in cDCs.

CD4+ and CD8+ cDCs are developmentally and functionally

related, yet have subtle but important differences in antigen pre-

sentation and in their transcriptomes (Miller et al., 2012). We

identified several thousand differential OCRs between them,

with dissimilar enrichments in some TF motifs (Figure 6C). The

differentiation of CD8+ cDCs is dependent on Irf8 and Batf3

(Hildner et al., 2008; Tamura et al., 2005) and those motifs

were correspondingly enriched in CD8+ DC OCRs. In contrast,

CEBP family motifs were enriched in OCRs specific to CD4+

cDCs. Motifs enriched in CD103+CD11b� intestinal DCs, which

are also Irf8-dependent (Ginhoux et al., 2009), were similar to

those of CD8+ DCs (Figure S6B), including strong enrichments

of transducers of type I interferon (IFN) signaling Stat2 and Irf9.

The differential accessibility at steady-state of OCRs predicted

to bind Stat2 and Irf9, suggests that Irf8-dependent cDCs may

be specifically poised to respond to IFN-I. This type of signaling

is specifically required by CD8+ and CD103+ DCs to promote

cross presentation and an increased anti-viral state (Diamond

et al., 2011; Helft et al., 2012).

TFs that Control OCR Dynamics during Lymphocyte
Differentiation
We applied the same powerful logic as for Figure 5 of correlating

the presence of a TF motif, the activity of the OCR, and the

expression of the corresponding TF, to discover relevant sites

of action for particular TFs in T and B lymphocyte differentiation.

In Figure 7A, we plot the activity of OCRs with the best score for

the RORg-binding. Clustering these OCRs based on ATAC-seq

intensity identified 6 patterns of OCR accessibility. Among those,

one cluster (cl3) exhibited a clear relationship to the expression

of Rorc gene in thymic DPs (Figure 7A; Table S7A) (p < 10�4),

and these OCRs coincided precisely with demonstrable

RORg binding from chromatin immunoprecipitation sequencing

(ChIP-seq) data (Guo et al., 2016) (Figure 7A, right). Another clus-

ter (cl4) seemed to respond to RORg in colonic T regulatory

(Treg) cells; some of the specific OCRs fall in close proximity

with genes that are differentially expressed in RORg+ Tregs,

such as Il23r (Table S7A). That different RORg-binding OCRs

are active in DP thymocytes and colonic RORg+ Tregs is consis-
Figure 5. Regulators of Chromatin Accessibility

(A) Transcription factor motif accessibility scores, TFs in rows (z-normalized), an

(B–E) Relationship between the expression of (B) Pax5, (C) Tbx1, (D) Hic1, and (E

represents a cell type, color-coded per Figure 1A.

(F) Accessibility score of Bcl11a motifs (top; cells arranged per Figure 1A) in rela

(G) Pearson coefficient and significance of correlations between TF motif score

development and function are highlighted in red.

(H) Expression patterns of the TFs determined to significantly correlate with chang

Side bars, motif variability and correlation coefficient.

See also Figure S5 and Tables S4 and S5.
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tent with the notion that RORg controls different transcriptional

targets in a context-dependent manner (Sefik et al., 2015). The

OCR clusters whose activity does not correlate with RORg

expression may correspond to false-positives frommotif predic-

tion or to TFs that share the same binding motif. To validate the

prediction that cl3 represents OCRs whose accessibility de-

pends on RORg, we performed ATAC-seq in DPs from Rorc-

deficient mice (Rorcgfp/gfp). Strikingly, almost all OCRs from the

DP-specific cl3 disappeared in RORg-deficient DPs (Figure 7B),

while those of the uncorrelated cl6 were unaffected. Thus, RORg

seems to operate as a pioneer factor.

ThPOK (Zbtb7b) and Runx3 are key TFs for the branched dif-

ferentiation of CD4+ and CD8+ T cells (Ellmeier and Taniuchi,

2014; Xiong and Bosselut, 2012). For Runx3, which is under

dominant translation control, our approach would not be infor-

mative, but for ThPOK, the correlative approach proved highly

suggestive: accessibility of many of the OCRs that contain its

cognate motif was curtailed in T cells in which ThPOK was pre-

sent (Figure 7C; Table S7B), especially those in cl2. This negative

correlation (see also Figure 5G) is consistent with the dominant

suppressive function of ThPOK, suggesting that it shuts down

the CD8+ T lineage program not only by inhibiting Runx3 expres-

sion but also by directly inhibiting a swath of enhancer elements.

Together with EBF1, Pax5 is the major TF defining B lympho-

cyte identity, essential for both early development and to

maintain the function of mature B cells (Horcher et al., 2001;

Medvedovic et al., 2011). It is expressed throughout B cell differ-

entiation before being silenced in plasma cells (Shi et al., 2015).

Pax5’s aggregated OCR scores directly correlate with its

expression (Figure 5B, validated by prior ChIP-seq data) (Re-

villa-I-Domingo et al., 2012), but a clustered analysis of OCRs

that contain its binding motif revealed a striking dynamic varia-

tion: OCRs in cl2 and cl3 became active at the proB.FrBC stage,

only transiently for cl2, and more stably for cl3. OCRs of cl5 only

became active later, in germinal center stages after immune acti-

vation, before being extinguished in plasma cells concomitant

with the loss of expression (Figure 7D; Table S7C). These

different behaviors of Pax5-binding OCRs are consistent with

its context-specific activity (Revilla-I-Domingo et al., 2012).

FoxP3 is the key controller of Treg development and function

(Ramsdell and Ziegler, 2014). It is not considered as a pioneer

factor but binds and modifies active enhancer elements (Sam-

stein et al., 2012). With the unique landscape available here,

we revisited the status of FoxP3 binding sites across immuno-

cyte differentiation. Among 2,000 high-confidence FoxP3-bind-

ing sites (Kitagawa et al., 2017; Kwon et al., 2017; Samstein

et al., 2012), we identified 1,080 DE OCRs that were accessible
d cell types in columns (hierarchically clustered).

) Pbx1 and its motif accessibility score for representative factors. Each point

tion to the expression of Bcl11a or Bcl11b (bottom).

and TF expression (generalized from B–E). Known regulators of immune cell

es in chromatin accessibility (positive correlation, top block; negative, bottom).
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Figure 6. Regulatory Factors in Myeloid Cells Inferred from Chromatin Accessibility

(A) Differential OCR signals across all steady-state myeloid cells (right, numbers of distinguishing OCRs; top, correlation tree).

(B) TF motif enrichment scores (chromVAR z-test) in myeloid group-specific OCRs from (A), filtered for TF expression levels and statistical significance, with

signed -log10 p values capped at 100 for display. Bars shaded by TF mRNA expression.

(C) Comparison of TF enrichment scores for OCRs accessible CD4+ and CD8+ cDCs, points are shaded according to the TF’s mRNA expression fold change

between the two DC subsets.

See also Figure S6 and Table S6.
in Tregs (Tables S7D and S7E). Consistent with prior conclusions

(Samstein et al., 2012), many of these DE OCRs (80%) were

constitutively accessible, from stem cells onward, and even in

B or myeloid cells (Figure 7E); all FoxP3-binding OCRs that

mapped to TSSs behaved similarly (Figure S7A). Another set

of FoxP3-binding OCRs behaved more dynamically, only

becoming active after the DP stage, suggesting control by

thymic positive selection events. A small but distinct minority

of these FoxP3-binding OCRs were Treg-specific (Figure 7E,

right), suggesting that FoxP3 opens these regions, alone or

with other Treg determining cofactors. Interestingly, the consti-

tutive and dynamic OCR sets were markedly distinguished by

their associated histone marks (Figure 7E, bottom) (data from Ki-

tagawa et al., 2017). All were H3K27Ac-positive enhancer ele-

ments, but the active enhancer mark H3K4Me1 was much

more prevalent among dynamic than constitutive OCRs (Figures

7E, bottom, and S7B). In addition, Nfkb(1/2)-binding motifs were

specifically enriched in dynamic FoxP3 OCRs (Figure 7F),
consistent with the role of nuclear factor kB (NF-kB) family mem-

bers in Treg differentiation (Oh et al., 2017). Ets and Lef1 binding

sites were enriched in both classes on OCRs, while Forkhead or

Runx motifs were preferentially present in constitutive FoxP3-

binding OCRs. Thus, these analyses reveal the existence of

two classes of FoxP3-binding enhancer elements. One is consti-

tutively open in many immunocytes, while the other is activated

with final Treg differentiation and seems to electively involve the

NF-kB family of TFs. These examples highlight the power of

these data to map OCRs that truly respond to a given TF and

identify relevant binding sites (see http://immgen.org for a larger

set of 300 TFs).

DISCUSSION

We profiled chromatin accessibility and gene expression in 90

cell types to generate a cis-regulatory atlas that encompasses

the entire span of lineages that compose the mouse immune
Cell 176, 897–912, February 7, 2019 907
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Figure 7. Dynamics of Chromatin Accessibilities on TF-Motif Containing OCRs along Differentiation

(A, C, and D) Cell type-dependent accessibility for OCRs that contain (A) RORg, (B) Zbtb7b, or (D) Pax5 motifs (top 1,000 predicted OCRs, clustered by k-means.

Top: mRNA levels. Right: TF motif scores and ChIP-seq signals averaged per cluster, ± SD).

(B) Normalized ATAC-seq intensity for OCRs that contain an RORg-binding motif of cluster3 or cluster6 (from A), in immature DP thymocytes of Rorc-deficient

mice or -positive littermates.

(legend continued on next page)
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system. The paired chromatin and transcriptome approach, the

focus on immunocytes, and the unprecedented granularity of the

data enabled us to move beyond an epigenomic roadmap,

providing a platform to infer causal regulatory interactions. Be-

sides providing a deep resource of great value to understand

immunological differentiation and function, the data bring in-

sights of broad relevance on the role and positions of enhancer

elements, reveal a deep dichotomy within mammalian gene

regulation, and illuminate the relation between transcription fac-

tor activity and chromatin configuration.

Establishing this ‘‘complete’’ landscape of 512,595 cis-regula-

tory elements was enabled by sampling a large repertoire of

closely related cell types, borderline significance of an ATAC

peak in one cell type being bolstered by related cells. This fine

mapping of cell state transitions enabled the analysis of regula-

tory interactions, which would not be possible with epigenomic

data obtained from whole tissues, or from a partial sampling of

specific cell types. We anticipate that future efforts with even

finer parsing of some lineages, as well as single-cell approaches,

may lead to an even more precise atlas. In the discussion and

interpretation of the present data, we have assumed that

OCRs distant from known TSS are likely to be enhancer ele-

ments. While some OCRs may correspond to other structures

(e.g., TSS of unrecognized transcriptional units, or non-enhancer

structural elements), the ‘‘rediscovery’’ of known enhancers in

the vicinity of the Cd4 and Cd8 loci support the validity of this

assumption.

We connected a number of OCRs to the expression of a

nearby gene, based on the plausible assumption that such a cor-

relation between accessibility of a cis-regulatory element and

expression of a gene signifies a functional relationship. It has

long been a conundrum to formally associate a cis-regulatory

element with the gene(s) it might regulate. The ‘‘closest gene’’

is usually the default call, even though it is known that some en-

hancers can be effective from very long distances. The results of

Figure 3C give some support to this general notion, by showing

that genes are mostly associated with enhancers within 20 kb or

less of their TSS. Indeed, the ‘‘closest gene’’ assignment is likely

correct 90.2% of the time (from Table S3F). Widespread redun-

dancy was another aspect of enhancer activity revealed by this

analysis, as most genes with an enhancer correlated to their

expression actually had several correlated enhancers (Figure 3D)

which were themselves inter-connected. That enhancers are

often repeated has been recognized from their first description

(Banerji et al., 1981; Benoist and Chambon, 1981), and a recent

study showed that 64% of D. melanogaster loci have redundant

‘‘shadow’’ enhancers (Cannavò et al., 2016). Redundancy

may provide functional buffering and evolutionary flexibility and

robustness (Hong et al., 2008; Osterwalder et al., 2018), or allow

fine-tuning of a gene’s transcription in slightly different stages or

states, or be mechanistically more efficient, synergistic binding

of the same TFs at closely spaced sites helping to stabilize an en-
(E) Chromatin accessibility for 1,080 DE-OCRs known to bind FoxP3 in ChIP-seq e

signal in Tregs than in precursor cell-types). ChIP-seq signal in these OCRs for m

(F) TF motif enrichment score in constitutive and dynamic FoxP3-binding OCRs.

See also Figure S7 and Table S7.
hanceosome complex. Finally, we observed very few cases of

silencer elements (defined as accessibility negatively correlated

with expression of the target gene), suggesting that positive

enhancement is the predominant mode of gene regulation in

mammalian transcription.

We observed a striking partition between one set of genes

whose activity seemed cued by the overall pattern of activity

of all distal enhancers and another that was aligned to activity

in promoter regions, with enrichment for different TFBS in the

promoters of each class. There are precedents for such diver-

gence. For instance, the housekeeping Hprt locus contains no

discernible enhancer (Gasperini et al., 2017), and enhancer cat-

alogs have generally shown them to be tissue-specific (Shen

et al., 2012). This dichotomy may be related to the demonstra-

tion in Drosophila of enhancer-promoter specificities that distin-

guish housekeeping and differentiation-linked regulatory pro-

grams (Zabidi et al., 2015). More generally, it relates to the

long-lasting debate on the differences between promoters and

enhancers. Promoters are classically defined as sites that focus

transcription initiation by recruiting Pol-II and basal transcription

factors, while enhancers supercharge the promoters they target

to increase the rate of transcription. But whether they truly

represent different entities has been nuanced or challenged

(Kim and Shiekhattar, 2015). The present results suggest that

they do play fundamentally different roles in orchestrating

transcription.

Beyond establishing the rich landscape of cis-regulatory re-

gions, the three-way correlation between activity of an OCR,

the TF motifs it contains, and the expression of the TFs allows

for accurate and pointwise predictions of how TFs orchestrate

immunocyte differentiation and function. We note that this

approach is blind to some classes of TFs: opportunistic TFs

that exploit already accessible chromatin regions (e.g., FoxP3),

whose regulation is post-transcriptional, and those controlled

by modification or localization (STATs, NF-AT). Our analyses

accurately predicted TFs whose activity is associated with spe-

cific lineages and stages (Figure 5) andwhich specificOCRs (and

genes) are actually activated by these TFs (Figures 7 and S7), this

on an unprecedented scale. These include well-known TFs for

which existing ChIP-seq data provide valuable validation and

also TFs for which no such data were available (Gata2, Nfe2,

or Eomes). Several of these profiles reveal a strong context

dependence for TF action (e.g., for RORg and Pax5) consistent

with RORg’s different footprint in Th17 versus colonic Tregs

(Sefik et al., 2015) and with Pax5’s variable involvement along

the B cell lineage (Revilla-I-Domingo et al., 2012), perhaps

depend on cell-type specific post-translational modifications,

co-factors, or ligands.

The analysis also reveals that TFs can have either positive or

negative consequences on accessibility of an OCR. The former

is readily conceptualized (docking of the factor displacing nucle-

osomes and/or recruiting additional chromatin modifiers), the
xperiments. Distal OCRs are classified as constitutive or dynamic (2-fold higher

ediator, cohesin, or histone marks in Tregs are shown below.
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latter less so, because closing of the element would potentially

hinder the TF from binding. Some ‘‘hit-and-run’’ mechanism

that instructs stable repressive histone marks or DNA methyl-

ation may be at play. It is generally thought that individual TFs

can both activate or repress transcription, depending on local

context. Our analyses (Figure 5G) suggest that many TFs domi-

nantly play either activating or repressive roles (because dual

function would result in no correlation overall). TFs with negative

correlation between expression and motif accessibility include a

Who’s Who of known repressors (Pbx1, Bcl11b, Zbtb7b). A ma-

jority of TFs, however, had positive effects on accessibility,

prompting the speculation that opening of chromatin is the domi-

nant mode of control for the unfolding of gene expression

through immune cell differentiation. This conclusion is consistent

with observations that target activation by Pax5 and PU.1 corre-

lated positively with DNA binding (Champhekar et al., 2015;

Revilla-I-Domingo et al., 2012). Mechanistically, PU.1 has

recently been shown to indirectly repress genes in T cell progen-

itors via TF theft, recruiting partner TFs to its own directly acti-

vated genes and thus depleting them from their own targets

(Hosokawa et al., 2018).

In conclusion, this resource provides an atlas of cis-regulatory

elements that will be leveraged by the community to guide

focused experiments to understand the regulation of a particular

locus through immune function or disease. This cis-regulatory

atlas may serve as an initial scaffold on which to systematically

build, through complementary ‘‘multi-omics’’ strategies, addi-

tional knowledge toward a complete understanding of genomic

regulation in immune cells.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD4 APC Thermo Fisher Scientific clone: RM4-5; cat#: 17-0042-81; lab: Brown

MHC II APC-eFluor780 Thermo Fisher Scientific clone: M5/114.15.2; cat#: 47-5321-82;

lab: Brown

CD45 APC-eFluor780 Thermo Fisher Scientific clone: 30-F11m; cat#: 47-0451-82;

lab: Brown

CD11c PE-Cy7 Thermo Fisher Scientific clone: N418; cat#: 25-0114-82; lab: Brown

MHC II eFluor450 Thermo Fisher Scientific clone: M5/114.15.2; cat#: 48-5321-82;

lab: Brown

CD103 PE Thermo Fisher Scientific clone: 2E7; cat#: 12-1031-82; lab: Brown

CD64 APC Thermo Fisher Scientific clone: X54-5/7.1; cat#: 17-0641-82;

lab: Brown

CD11b FITC Thermo Fisher Scientific clone: M1/70; cat#: 11-0112-82; lab: Brown

Siglec F PE Thermo Fisher Scientific clone: 1RNM44N; cat#: 12-1702-82;

lab: Brown

CD11c PE-Cy7 Thermo Fisher Scientific clone: N418; cat#: 25-0114-82; lab: Brown

CD45 BV510 BD Biosciences clone: 30-F11; cat#: 563891; lab: Brown

CD8 PE Thermo Fisher Scientific clone: 53-6.7; cat#: 12-0081-82; lab: Brown

CD3 FITC Thermo Fisher Scientific clone: eBio500A2; cat#: 11-0033-82;

lab: Brown

CD19 FITC Thermo Fisher Scientific clone: eBio1D3; cat#: 11-0193-82;

lab: Brown

CD11c PE Thermo Fisher Scientific clone: N418; cat#: MA5-16878; lab: Brown

B220 eFluor450 Thermo Fisher Scientific clone: RA3-6B2; cat#: 48-0452-82;

lab: Brown

PDCA1 APC Thermo Fisher Scientific clone: eBio927; cat#: 17-3172-82;

lab: Brown

Siglec H PE-Cy7 Thermo Fisher Scientific clone: eBio440c; cat#: 25-0333-82;

lab: Brown

cd45 PE-Cy7 Biolegend clone: 30F11; cat#: 103114; lab: Turley

Epcam PE-Cy7 Biolegend clone: G8.8; cat#: 118216; lab: Turley

Ter11 PE-Cy7 Biolegend clone: TER119; cat#: 116222; lab: Turley

CD21/35 FITC Biolegend clone: 7E9; cat#: 123407; lab: Turley

Madcam 488 Biolegend clone: MECA-367; cat#: 120708; lab: Turley

PDPN APC Biolegend clone: 8.1.1; cat#: 127410; lab: Turley

CD140a PE BD PharMingen clone: APA5; cat#: 562776; lab: Turley

CD31 PE-Dazzle Biolegend clone: 390; cat#: 102430; lab: Turley

Calcein Blue Molecular Probes clone: NA; cat#: C1429; lab: Turley

Live/Dead Near-IR633 Molecular Probes clone: NA; cat#: L10119; lab: Turley

CD45.2 FITC Invitrogen clone: 104; cat#: 11-0454-85; lab: Goldrath

CD127 PE-Cy7 Invitrogen clone: A7R34; cat#: 25-1271-82; lab:

Goldrath

CD8a APC-eFluor780 Invitrogen clone: GK1.5; cat#: 47-0041-82; lab:

Goldrath

CD45.1 APC Invitrogen clone: A20; cat#: 17-0453-82; lab: Goldrath
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KLRG1 E450 Invitrogen clone: 2F1; cat#: 48-5893-82; lab: Goldrath

CD44 PE-Cy7 Invitrogen clone: IM7; cat#: 25-0441-82; lab: Goldrath

CD62L APC BioLegend clone: MEL-14; cat#: 104412; lab: Goldrath

Rat anti-mouse CD4 PE-Cy7 BD Biosciences clone: RM4-5; cat#: 552775; lab: Kang

Rat anti-mouse CD8a PE-Cy7 BD Biosciences clone: 53-6.7; cat#: 552877; lab: Kang

Hamster anti-mouse CD3e PerCP-Cy5.5 BD Biosciences clone: 145-2C11; cat#: 551163; lab: Kang

Hamster anti-mouse TCRd BV 421 Biolegend clone: GL3; cat#: 118120; lab: Kang

Hamster anti-mouse Vg2-FITC Biolegend clone: UC3-10A6; cat#: 137703; lab: Kang

Hamster anti-mouse Vg1.1-APC Biolegend clone: 2.11; cat#: 141108; lab: Kang

Rat anti-mouse CD24 APC-eFluor780 eBioscience clone: M1/69; cat#: 48-0242-82; lab: Kang

Rat anti-mouse Scart2 J. Kisielow clone: NA; cat#: NA; lab: Kang

Hamster anti-mouse CD27 PE eBioscience clone: LG.7F9; cat#: 12-0271-81; lab: Kang

CD19 eBioscience clone: MB19-1; cat#: NA; lab: Edy Kim

Ter119 eBioscience clone: TER119; cat#: NA; lab: Edy Kim

Ly6G/Gr1 eBioscience clone: A18; cat#: NA; lab: Edy Kim

CD8a eBioscience clone: 53/6.7; cat#: NA; lab: Edy Kim

TCRb eBioscience clone: H58-597; cat#: NA; lab: Edy Kim

mCD1d tetramer PBS-57 APC NIH Tetramer Core Facility clone: NA; cat#: NA; lab: Edy Kim

CD3 FITC eBioscience clone: eBio500A2; cat#: 11-0033-82;

lab: Merad

CD19 FITC eBioscience clone: eBio1D3; cat#: 11-0193-82;

lab: Merad

CD8 PE BioLegend clone: 53-6.7; cat#: 100707; lab: Merad

CD4 APC BioLegend clone: GK1.5; cat#: 100411; lab: Merad

CD11c PE/Cy7 BioLegend clone: N418; cat#: 117317; lab: Merad

CD45 BV510 BioLegend clone: 30-F11; cat#: 103137; lab: Merad

MHCII APC/Cy7 BioLegend clone: M5/114.15.2; cat#: 107627;

lab: Merad

PDCA1 APC eBioscience clone: ebio927; cat#: 17-3172-82;

lab: Merad

B220 eF450 BioLegend clone: RA3-6B2; cat#: 103239; lab: Merad

Siglec H Pe/Cy7 eBioscience clone: ebio440c; cat#: 25-0333-82;

lab: Merad

CD64 APC BioLegend clone: X54-5/7.1; cat#: 139305; lab: Merad

CD103 PE BioLegend clone: 2E7; cat#: 121405; lab: Merad

CD11b FITC BioLegend clone: M1/70; cat#: 101205; lab: Merad

Siglec F PE BD Biosciences clone: E50-2440; cat#: 552126; lab: Merad

CD4 UCSF Ab core clone: GK1.5; cat#: AM012; lab: Nabekura

CD5 UCSF Ab core clone: 53-7.3; cat#: AM018; lab: Nabekura

CD8a UCSF Ab core clone: 2.43; cat#: AM023; lab: Nabekura

CD19 UCSF Ab core clone: 1D3; cat#: AM005; lab: Nabekura

Gr-1 UCSF Ab core clone: RB6-8C5; cat#: AM051; lab:

Nabekura

Ter110 UCSF Ab core clone: Ter119; cat#: AM030; lab: Nabekura

BioMag goat anti-rat IgG beads QIAGEN clone: NA; cat#: 310107; lab: Nabekura

CD49b FITC BioLegend clone: DX5; cat#: 108906; lab: Nabekura

NK1.1 PerCP-Cy5.5 BioLegend clone: PK136; cat#: 108728; lab: Nabekura

(Continued on next page)
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CD3e PE-CY7 BioLegend clone: 145-2C11; cat#: 100320; lab:

Nabekura

CD19 PE-CY7 BD Biosciences clone: 1D3; cat#: 552854; lab: Nabekura

CD11b PE BD Biosciences clone: M1/70; cat#: 553311; lab: Nabekura

CD27 APC BioLegend clone: LG.3A10; cat#: 124212; lab:

Nabekura

CD49a Biotin Miltenyi Biotec clone: REA493; cat#: 130-107-587;

lab: Nabekura

CD127 Biotin BioLegend clone: A7R34; cat#: 135006; lab: Nabekura

CD51 Biotin BD Biosciences clone: RMV-7; cat#: 551380; lab: Nabekura

Streptavidin-BV421 BioLegend clone: NA; cat#: 405226; lab: Nabekura

Propidium Iodide Sigma-Aldrich clone: NA; cat#: P4170; lab: Nabekura

CD138 PECy7 BioLegend clone: 281-2; cat#: 142514; lab: Nutt

CD138 PE BDBiosciences clone: 281-2; cat#: 553714; lab: Nutt

CD38 Alexa fluor 680 in house clone: 90; cat#: NA; lab: Nutt

NK1.1 APC BD Biosciences clone: PK136; cat#: 550627; lab: Nutt

CD11b (MAC-1) Alexa fluor 647 in house clone: M1/70; cat#: NA; lab: Nutt

TCRb APC eBioscience clone: H57-597; cat#: 17-5961-83; lab: Nutt

TCRb PE BD Biosciences clone: H57-597; cat#: 553172; lab: Nutt

MHC-II APC-eFluor780 eBioscience clone: M5/114.15.2; cat#: 47-5321-82;

lab: Nutt

Gr-1 (Ly-6G) PE in house clone: RB6-8C5; cat#: NA; lab: Nutt

B220 (CD45R) FITC in house clone: RA3-6B2; cat#: NA; lab: Nutt

CD95 (Fas) PECy7 BD Biosciences clone: Jo2; cat#: 557653; lab: Nutt

CXCR4 BV421 BD Biosciences clone: 2B11; cat#: 585522; lab: Nutt

CD86 BV605 BD Biosciences clone: GL1; cat#: 563055; lab: Nutt

IgM APC-eFluor780 eBioscience clone: II/41; cat#: 47-5790-82; lab: Nutt

IgD APC-eFluor780 eBioscience clone: 11-26C; cat#: 47-5993-80; lab: Nutt

IgG BV421 BioLegend clone: Poly4053; cat#: 405317; lab: Nutt

CD117 PE-Cy7 BioLegend clone: 2B8; cat#: 105814; lab: Benoist

CD11b PerCPcy5.5 BioLegend clone: M1/70; cat#: 101228; lab: Benoist

CD11b PE BioLegend clone: M1/70; cat#: 101208; lab: Benoist

CD11C A700 BioLegend clone: N418; cat#: 117320; lab: Benoist

CD11c APC-Cy7 BioLegend clone: N418; cat#: 117324; lab: Benoist

CD19 APC-ef780 eBiosciences clone: 1D3; cat#: 47-0193-82; lab: Benoist

CD19 PE-TR eBiosciences clone: 1D3; cat#: 61-0193-82; lab: Benoist

CD19 PE-Cy7 BioLegend clone: 1D3; cat#: 115520; lab: Benoist

CD19 APC-Cy7 BioLegend clone: 1D3; cat#: 115530; lab: Benoist

CD24 Fitc BioLegend clone: M1/69; cat#: 101806; lab: Benoist

CD25 APC BioLegend clone: PC61; cat#: 101910; lab: Benoist

CD25 PE BioLegend clone: PC61; cat#: 101904; lab: Benoist

CD28 Bio BioLegend clone: E18; cat#: 102104; lab: Benoist

CD4 APC eBiosciences clone: RM4-5; cat#: 17-0042-82;

lab: Benoist

CD4 PE eBiosciences clone: RM4-5; cat#: 12-0042-82;

lab: Benoist

CD44 Fitc BioLegend clone: IM7; cat#: 103022; lab: Benoist

CD45 PE CF594 BioLegend clone: 30 F11; cat#: 562420; lab: Benoist
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CD45 APC-Cy7 BioLegend clone: 30 F11; cat#: 103116; lab: Benoist

CD45R P.B. BioLegend clone: RA3 6B2; cat#: 193227; lab: Benoist

CD62L PE-Cy7 BioLegend clone: MEL14; cat#: 104418; lab: Benoist

CD69 A700 BioLegend clone: H1.2F3; cat#: 104539; lab: Benoist

CD8 A700 BioLegend clone: 53 6.7; cat#: 100730; lab: Benoist

CD8 PE-Cy7 BioLegend clone: 53 6.7; cat#: 100722; lab: Benoist

CD8 APC BioLegend clone: 53 6.7; cat#: 100712; lab: Benoist

EpCAM APC BioLegend clone: G8.8; cat#: 118214; lab: Benoist

F4/80 APC-Cy7 BioLegend clone: BM8; cat#: 123118; lab: Benoist

F4/80 PE-Cy7 BioLegend clone: BM8; cat#: 123114; lab: Benoist

F4/80 PE BioLegend clone: BM8; cat#: 123110; lab: Benoist

Ly6G/Gr1 APC-ef780 eBiosciences clone: RB6 8C5; cat#: 47-5931-82; lab:

Benoist

Ly6G/Gr1 APC-Cy7 BioLegend clone: RB6 8C5; cat#: 108424; lab: Benoist

Ly6G/Gr1 APC BioLegend clone: RB6 8C5; cat#: 108412; lab: Benoist

ICAM2/CD102 Fitc eBiosciences clone: mlC2/4; cat#: 11-1029-42; lab:

Benoist

IgM Fitc eBiosciences clone: eB121 15F9; cat#: 11-5890-82; lab:

Benoist

Ly51 PE BioLegend clone: 6C3; cat#: 108308; lab: Benoist

MHCII Fitc BioLegend clone: M5/114; cat#: 107606; lab: Benoist

NK1.1 APC-Cy7 BioLegend clone: PK136; cat#: 108710; lab: Benoist

NK1.1 APC BioLegend clone: PK136; cat#: 108724; lab: Benoist

Nrp1 APC BioLegend clone: 3E12; cat#: 145206; lab: Benoist

TCRb ef450 eBiosciences clone: H57 597; cat#: 47-5961-82; lab:

Benoist

TCRb PE-Cy7 BioLegend clone: H57 597; cat#: 109222; lab: Benoist

TCRb P.B. BioLegend clone: H57 597; cat#: 109226; lab: Benoist

TCRb PerCPcy5.5 BioLegend clone: H57 597; cat#: 109228; lab: Benoist

TCRgd PerCPcy5.5 BioLegend clone: GL3; cat#: 118118; lab: Benoist

Ter119 APC-ef780 eBiosciences clone: Ter119; cat#: 47-5921-82; lab:

Benoist

Ter119 APC-Cy7 BioLegend clone: Ter119; cat#: 116223; lab: Benoist

CD45-APC-cy7 Biolegend clone: NA; cat#: NA; lab: Colonna

CD3-FITC Biolegend clone: NA; cat#: NA; lab: Colonna

CD19-FITC eBioscience clone: NA; cat#: NA; lab: Colonna

THy1.2-APC eBioscience clone: NA; cat#: NA; lab: Colonna

TCRb-PE PharMingen/BD clone: NA; cat#: NA; lab: Colonna

KLRG1-PE Biolegend clone: NA; cat#: NA; lab: Colonna

CD5-PE Biolegend clone: NA; cat#: NA; lab: Colonna

CCR6-BV421 PharMingen/BD clone: NA; cat#: NA; lab: Colonna

NKp46-biotin Colonna Lab clone: NA; cat#: NA; lab: Colonna

CD3-PercP-Cy5.5 eBioscience clone: NA; cat#: NA; lab: Colonna

CD19-PercP-Cy5.5 ebioscience clone: NA; cat#: NA; lab: Colonna

NK1.1-PercP-Cy5.5 Biolegend clone: NA; cat#: NA; lab: Colonna

SCA1-PacBlue Biolegend clone: NA; cat#: NA; lab: Colonna

CD127-FITC eBioscience clone: NA; cat#: NA; lab: Colonna

KLRG1-APC eBioscience clone: NA; cat#: NA; lab: Colonna

(Continued on next page)
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ST2-biotin eBioscience clone: NA; cat#: NA; lab: Colonna

SAV-PE-Cy7 eBioscience clone: NA; cat#: NA; lab: Colonna

CD3e PE eBioscience clone: 145-2C11; cat#: 12-0031-82; lab:

Randolph

CD3e PECy7 eBioscience clone: 145-2C11; cat#: 25-0031-82; lab:

Randolph

CD11b APCCy7 Biolegend clone: M1/70; cat#: 101226; lab: Randolph

CD19 PE Biolegend clone: 6D5; cat#: 115508; lab: Randolph

CD45 PB Biolegend clone: 30-F11; cat#: 103126; lab: Randolph

CD64 APC BD Biosciences clone: X54-5/7.1; cat#: 558539; lab:

Randolph

CD102 (ICAM2) Alexa 488 eBioscience clone: 3C4; cat#: 53-1021-82; lab:

Randolph

CD115 PE eBioscience clone: AFS98; cat#: 12-1152-82; lab:

Randolph

CD115 APC eBioscience clone: AFS98; cat#: 17-1152-82; lab:

Randolph

CD206 FITC Biolegend clone: C068C2; cat#: 141704; lab:

Randolph

CD226 PE Biolegend clone: 1000000; cat#: 128806; lab:

Randolph

B220 PECy7 eBioscience clone: RA3-6B2; cat#: 25-0452-82; lab:

Randolph

Ly6C BV421 Biolegend clone: HK1.4; cat#: 128032; lab: Randolph

Ly6G PE BD Biosciences clone: 1A8; cat#: 553128; lab: Randolph

Ly6G PE-Cy7 BD Biosciences clone: 1A8; cat#: 560601; lab: Randolph

F4/80 FITC Biolegend clone: BM8; cat#: 123108; lab: Randolph

F4/80 PE-Cy7 Biolegend clone: BM8; cat#: 123114; lab: Randolph

MHCII (I-A/I-E) PB Biolegend clone: M5/114.15.2; cat#: 107620; lab:

Randolph

MerTK PECy7 eBioscience clone: DSSMMER; cat#: 25-5751-82; lab:

Randolph

CD3 Biotin Biolegend clone: 145-2C11; cat#: 100304; lab:Wagers

CD4 Biotin Biolegend clone: GK1.5; cat#: 100404; lab: Wagers

CD5 Biotin ebioscience clone: 53-7.3; cat#: 12-0051-85; lab:

Wagers

CD8 Biotin Biolegend clone: 53-6.7; cat#: 100704; lab: Wagers

CD19 Biotin Biolegend clone: 6D5; cat#: 115504; lab: Wagers

B220 Biotin Biolegend clone: RA3-6B2; cat#: 103204; lab: Wagers

GR-1 Biotin ebioscience clone: RB6-8C5; cat#: 13-5931-82; lab:

Wagers

Mac-1 Biotin ebioscience clone: M1/70; cat#: 13-0112-85; lab:

Wagers

Ter-119 Biotin Biolegend clone: TER-119; cat#: 116204; lab: Wagers

Streptavidin Pacific Orange Thermo Fisher clone: NA; cat#: S32365; lab: Wagers

Sca-1 PECy7 Biolegend clone: D7; cat#: 108113; lab: Wagers

c-Kit APC ebioscience clone: 2B8; cat#: 17-1171-83; lab: Wagers

CD48 APCCy7 Biolegend clone: HM48-1; cat#: 103431; lab: Wagers

CD150 PE Biolegend clone: TC15-12F12.2; cat#: 115904;

lab: Wagers

(Continued on next page)
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CD34 FITC ebioscience clone: RAM34; cat#: 11-0341-85;

lab: Wagers

Flk2 PEcf594 BD biosciences clone: A2F10.1; cat#: 562537; lab: Wagers

Biological Samples

Sorted cell populations This paper Table S1 and http://www.immgen.org/

ImmGenATAC1219Sorts.S1A.pdf

Critical Commercial Assays

Nextera DNA Library Preparation Kit Illumina FC-121-1030

Deposited Data

Raw sequencing data This paper GEO: GSE100738

Experimental Models: Organisms/Strains

C57BL/6 mice Jackson Laboratory Jax0664

B6.Rorctm2Litt Jackson Laboratory Jax7572

Foxp3-ires-gfp reporter mice PubMed: 16648838

Software and Algorithms

Genome mm10 http://hgdownload.cse.ucsc.edu/

goldenpath/mm10/bigZips/mm10.2bit

mm10

Transcription start sites http://hgdownload.cse.ucsc.edu/

goldenPath/mm10/database/refFlat.txt.gz

downloaded Jan. 2017

Blacklisted regions http://mitra.stanford.edu/kundaje/

akundaje/release/blacklists/mm10-

mouse/mm10.blacklist.bed.gz

N/A

RNaseq GTF file https://genome.ucsc.edu/cgi-bin/hgTables N/A

Genome conservation scores http://hgdownload.cse.ucsc.edu/

goldenpath/mm10/phastCons60way/

mm10.60way.phastCons.bw

N/A

sickle1.2 (Version 1.33) https://github.com/najoshi/sickle

TrimGalore version 0.4.0 http://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Samtools 0.1.19 http://samtools.sourceforge.net

Picard Tools http://broadinstitute.github.io/picard/ N/A

hisat2 version 2.0.4 https://ccb.jhu.edu/software/hisat2/

manual.shtml

Htseq version 0.6.1 https://htseq.readthedocs.io/en/release_

0.10.0/

Gaston version 1.5.3 https://cran.r-project.org/web/packages/

gaston/index.html

IGV http://software.broadinstitute.org/

software/igv/

MACS2 https://github.com/taoliu/MACS/wiki

BEDTools https://bedtools.readthedocs.io/en/latest/ Quinlan and Hall, 2010

HOMER http://homer.ucsd.edu/homer/

chromVAR https://bioconductor.org/packages/

release/bioc/html/chromVAR.html

Schep et al., 2017

chromVARmotifs version 0.2.0 https://github.com/buenrostrolab/

chromVARmotifs

Schep et al., 2017

Other

H3K4Me1 ChIP-seq Placek et al., 2017 GSE69162

FoxP3 ChIP-seq Samstein et al., 2012 GSE40684

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FoxP3, H3K27Ac, H3K4Me1/3, Mediator,

Cohesin ChIP-seq

Kitagawa et al., 2017 DRA003955

PAX5 ChIPseq Revilla-I-Domingo et al., 2012 GSE38046

RORg ChIPseq Guo et al., 2016 GSE88916
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Christophe Benoist (cbdm@

hms.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 mice were obtained from the Jackson Laboratory, as were B6.Rorctm2Litt (Jax7572), housed under SPF conditions (HMS

IACUC protocol 02954). Young adult males or females (as listed in Table S1) were used at 5-6 weeks of age. Rorc-deficient mice

were generated in (+/� x +/� ) crosses, and +/+ or +/� littermates were used as controls.

METHOD DETAILS

ATAC-seq Data Generation
To ensure consistency in the data, the different immune cell populations were sorted and frozen in each participating laboratory, but

all processing, library construction and sequencing were performed jointly in the ImmGen core lab. As a pilot for this multi-site pro-

gram, all participating labs generated samples of total splenic CD19+ B cells, a readily sorted cell population (which led to some

refinement of the procedure and provided a baseline of inter-replicate variance).

Mice were sacrificed and immunocytes were isolated to high purity by flow cytometry according to ImmGen SOP using the anti-

bodies and gates indicated in Table S1 and Figure S1A. two rounds of sorting were performed to collect 10,000 cells (exceptions for

Cd34-LTHSC, Cd34+LTHSC and STHSC populations for which 677, 2483 and 3660 cells were sorted, respectively) in 1.5mLDNA lo-

bind tubes (#022431021, Eppendorf) containing 100uL of BAMBANKER (serum-free cell freezing medium, No.302-14681, Wako).

Cells were kept on ice at most 30 minutes and immediately stored at �80�C following a slow-freeze procedure; (cell freezing

container with isopropyl alcohol at a rate of �1�C/minute with temperatures decreasing from 4�C to �80�C).
ATAC-seq libraries were prepared as previously reported (Corces et al., 2016) with the following modifications. Frozen cells were

thawed, washed with 1mL of PBS containing protease inhibitors (Complete EDTA-free protease inhibitor cocktail, Roche Diagnos-

tics, Basel, Switzerland) and cell pellets were resuspended in 10uL of Tn5 transposase mixture: 1x Tagment DNA Buffer, 0.5uL

Tagment DNA Enzyme (Nextera DNA Library Preparation Kit, Illumina) and 0.2mg/ml digitonin (#G9441, Promega) on ice. Cells

were incubated at 37�C for 30 minutes with agitation followed by DNA isolation using the MinElute Reaction Cleanup Kit (QIAGEN,

Hilden, Germany). Construction of ATAC-seq libraries included an initial round of PCR in a total volume of 50uL using the NEBNext

High-Fidelity 2X PCR Master Mix (New England Biolabs, MA, USA) with primers (0.5uM each) from (Buenrostro et al., 2015) with the

following thermal cycles: 5 minutes at 72�C, 30 s at 98�C, followed by 7 cycles [98�C for 10 s, 63�C for 30 s and 72�C for 60 s] and a

final extension at 72�C for 5 minutes. PCR products were purified and size-selected using Agencourt AMPure XP beads (Beckman

Coulter) (0.65x and 1.8x volume to remove long and short fragments respectively) and eluted in 18uL of EB (QIAGEN). To avoid over

amplification of libraries which result in GC bias, 2uL of the eluted DNA were subjected to qPCR (StepOnePlus Real-Time PCR Sys-

tem, Life Technologies) in a volume of 20uL using SYBR GreenI dye (final 0.6x SYBR GreenI, Life Technologies) and with the respec-

tive primers (1.25uM each), as performed in the first round of PCR. Following qPCR [30 s at 98�C, followed by 30 cycles (98�C for 10 s,

63�C for 30 s and 72�C for 60 s)], amplification curves were analyzed and the optimal number of PCR cycles for each sample were

estimated with cycle thresholds reaching¼ of themaximum. Upon selecting the cycle threshold, 12.5uL of the eluted DNAwere sub-

jected to a second round of PCR in a volume of 50uL with NEBNext High-fidelity 2x PCR master mix, respective primers (1.25uM

each) and the following thermal cycles: 30 s hot-start at 98�C, followed by 7�13 cycles [98�C for 10 s, 63�C for 30 s and 72�C for

60 s] and a final extension at 72�C for 5 minutes. The libraries were purified by Agencourt AMPure XP beads (x1.8 vol.), quantified

by qPCR using Power SYBR Green PCR Master mix (ThermoFisher) and universal sequencing primers (P5_FW:50AATGATACGGC

GACCACCGA and P7_RV:50CAAGCAGAAGACGGCATACGA, 0.2uM each) and pooled, which were sequenced as paired-end

(38+37bp) on an Illumina NextSeq 500 instrument in high-output mode.
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ATAC-seq Quantification and Normalization
After trimming adaptor sequences and low quality reads using sickle1.2 (https://github.com/najoshi/sickle), short reads were map-

ped to mm10 reference genome using bowtie2 with the following options; -X 1000 –fr, while non-unique, ChrM mapping (0.1�20%,

median = 4.1%) and duplicated reads (7�69%, median = 22%) were filtered out using samtools view -q 30 [samtools 0.1.19] and

Picard Tools (Picard MarkDuplicates, http://broadinstitute.github.io/picard). The summary of ATAC-seq read statistics can be found

in Table S1. Paired-end reads spanning less than 120 bpwere used for determining the peak summits in all populations usingMACS2

functions (–call-summits) (https://github.com/taoliu/MACS). Open chromatin regions (OCR) of a 250 bp width were centered on all

summits selecting the peak summit with the most significant q-value, when compared with ATAC-seq signals in 332,233 regions.

Formally, 2 to 181 samples were grouped according to a hierarchical clustering with various cut-offs in order to achieve sequencing

depth and estimate the peak summits for all populations. A window of 250 bpwas used onset based off centered summits similarly in

the first step, which resulted in 518,845 ATAC-seq OCRs. As some OCRs can arise as sequencing-based artifacts (ENCODE Project

Consortium, 2012) and may also share sequence homology with the mitochondrial genome, we removed possible artifact OCRs by

filtering blacklisted genomic regions and chrM homologous regions (a blacklist was downloaded from: https://sites.google.com/site/

anshulkundaje/projects/blacklists).

ChrM homologous regions were identified by mapping short mitochondrial DNA sequences to the mouse nuclear chromosomes,

consisting of 7,889 genomic regions in total. We report 512,595 cumulative OCRs (ImmGenATAC1219.peak_1 �512595) across our

cis-regulatory atlas. For the analysis of TSS (transcriptional start sites) and DE (distal enhancers) connected OCRs, we designated

these OCRs as TSS connected (i.e., OCRs of which summit is within 125bp upstream or downstream of TSS, as all OCRs are 250bp

width centered on the summit) and all others as DE connected OCRs. 27,921 TSS positions were defined fromUCSC annotation data

on mm10 (http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/refFlat.txt.gz, downloaded Jan. 2017). We employed the

same reference data to assign close-by genes for each OCR as reported in Table S2.

To compute signal intensity in each OCR, reads mapped to the plus strand were shifted by +4 bp and reads mapped to the minus

strand by�5 bp. Second, edges of fragments corresponding to paired reads were tested for OCR overlapping using BEDTools2.25.0

[bedtools intersect (Quinlan and Hall, 2010)]. A fragment edge in an OCRwas counted unless the other edge of the fragment mapped

to the same OCR in order to avoid counting non-independent Tn5 insertion events. A pseudo count of 0.1 was added to edge counts

in peaks, log2-transformed and normalized by quantile normalization. For calculating the cell population mean, the quantile-normal-

ized counts were converted back to linear scale and means of replicates were calculated (Table S2A). Backgrounds were estimated

based on the ATAC-seq signals of regions through random sampling with p values for each OCR computed using a negative bino-

minal distribution of the background in each sample. Data were also adjusted for multiple hypothesis testing using the Benjamini and

Hochberg (BH) method. All population p values are supplied in Table S2.

Replicates for each population weremerged and paired reads spanning less than 120 bp regions were used to compute ATAC-seq

pile-up traces for each population using MACS2, which were further normalized by quantile normalization across 25bp bins. To visu-

alize the data, we used IGV (http://software.broadinstitute.org/software/igv/). The assembled data can be analyzed interactively on

the USCS platform via the ImmGen Chromatin browser (http://rstats.immgen.org/Chromatin/chromatin.html).

ATAC-seq QC
Data quality control analyses were performed for each sample and across the projects by: (1) counting the number of properly map-

ped paired ends, setting a threshold of 2,470,102 as acceptable across this project (range 2,470,102 to 16,029,540, median

6,841,995). (2) computing signal enrichments around the TSS relative to genomewide average, a metric which identifies datasets

with high signal to noise ratios (Corces et al., 2016) (Table S1); a value > 3.9% was considered acceptable across this project (range

3.9% to 31.8%, median 12.5%). (3) Concordance between the two biological replicates. We selected, for each cell-type, a subset of

OCRs in which the raw edge counts were > = 10 in at least one replicate, which was used to compute a Pearson correlation between

the two replicates. The Pearson coefficient is sensitive to the total number of reads (as evidenced by the B cell pilot, Figure S1B left).

The samples retained for the analysis exhibited comparable inter replicates correlations to the trend estimated from B cell pilots

(green line, Figure S1B right).

RNA-seq
RNA-seq was performed with the standard ImmGen low-input protocol. A total of 1,000 cells were sorted directly into 5ul of lysis

buffer (TCL Buffer (QIAGEN) with 1% 2-Mercaptoethanol). Smart-seq2 libraries were prepared as previously described (Picelli

et al., 2014) with slight modifications. Briefly, total RNA was captured and purified on RNAClean XP beads (Beckman Coulter). Poly-

adenylated mRNA was then selected using an anchored oligo(dT) primer (50–AAGCAGTGGTATCAACGCAGAGTACT30VN-30) and
converted to cDNA via reverse transcription. First strand cDNA was subjected to limited PCR amplification followed by Tn5 trans-

poson-based fragmentation using the Nextera XT DNA Library Preparation Kit (Illumina). Samples were then PCR amplified for 18

cycles using barcoded primers such that each sample carries a specific combination of eight base Illumina P5 and P7 barcodes

for subsequent pooling and sequencing. Paired-end sequencing was performed on an Illumina NextSeq 500 using 2 3 25bp reads.

Low quality reads were trimmed using sickle1.2 and the adaptor sequence with TrimGalore (version0.4.0,http://www.

bioinformatics.babraham.ac.uk/projects/trim_galore/). Short reads were then mapped to mm10 genome using hisat2 [version2.0.4

(https://ccb.jhu.edu/software/hisat2/manual.shtml)] with–transcriptome-mapping-only–no-discordant options. Unmapped and low
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quality scoring (MAPQ < 5) reads were removed using samtools. Moreover, duplicated reads were removed using the Picard

MarkDuplicates function. Properly paired reads were selected by samtools view -f 0x02 and counted for each gene using htseq-

count (version0.6.1) with -s no option and a GTF file from UCSC mm10 refGene downloaded from UCSC table browser (https://

genome.ucsc.edu/cgi-bin/hgTables). Genes with a minimum read count of 5 in all replicates of a population (17,535 genes) were re-

tained. A pseudo count of 1 was added and log2-transformed prior to quantile normalization. Quantile-normalized counts were con-

verted back to a linear scale and means of replicates were calculated for each population (Table S2C). The number of reads for each

processing step can be found in Table S1B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dimensionality Reduction and Visualization with t-SNE
To visualize the 334,879 OCRs sampled from our collection of populations, we performed a t-Stochastic Neighbor Embedding of the

OCR x cell-type count matrix. Specifically, we derived the top 25 principal components from the 334,870 3 86 matrix using the

implicitly restarted Lanczos bidiagonalization algorithm (irlba). Next, we embedded this high-dimensional chromatin accessibility

landscape into a two-dimensional coordinate system using the Barnes-Hut implementation of t-SNE through the Rtsne package

with default parameters (perplexity = 30). Individuals peaks were assigned binary TF motif matches based on predicted binding af-

finities of the mm10 sequence and correspondingly colored (see below for motif matching analysis). For sample populations-based

coloring, each peak was assigned a population with the maximum chromatin accessibility observed from the normalized counts

matrix. Finally, for each peak i in our dataset, we computed the Gini Index over the n populations, yielding a per-peak measure of

‘‘chromatin inequality’’ about the populations. The Gini Index for peak i, denoted Gi; was computed as:

Gi =

Pn
j = 1

Pn
k = 1

��xi;j � xi;k
��

2n
Pn

j = 1xi;j
where xi;j represents an element in the the log2 normalized count
s matrix for peak i and population j.

OCR Variance Component Analysis
We applied variance component models to characterize how patterns of chromatin covariance (Figure 2A) explained observed gene

expression variance within our sorted populations. As a variance components model assumes normally distributed noise, we utilized

a variance stabilizing transformation proposed by Anscombe (1948) to model the empirical a negative binomial distribution of

RNA-seq count data. Specifically, for each gene (indexed by i), the vector of normalized gene expression counts per cell-type, Yi,

was transformed into a new vector Y
0
i from centering and scaling using Anscombe’s transformation:

Y
0
i =

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yi + 3=8

1=f� 3=4

s !
;

where f is the dispersion chosen so as tominimize the ratio of the
 dispersion of the residual standard deviation as implemented in the

Varistran package (https://github.com/MonashBioinformaticsPlatform/varistran). With our transformed gene expression vector j, we

then fit the following variance component model:

Y
0
i � N

�
0;Ds2

d +Ts2
t + Is2

e

�
;

where D and T are the sample-sample correlation matrices com
puted from the distal enhancers and transcription start site OCRs

respectively (see Figure 2A) and I is the identify matrix. Average information restricted likelihood estimation (AIREML) was used to

estimate the values of the parameters of the variance component models, sd; st; and se. To then determine the proportion of the

variance explained by each variance component, we generated a vector Vi; which by definition sums to 1:

Vi =

�
s2
d

s2
d + s2

t + s2
e

;
s2
t

s2
d + s2

t + s2
e

;
s2
e

s2
d + s2

t + s2
e

�

Here, the proportion of the variance in expression for gene i expl
ained by the DE logic would be represented by the first element in

the Vi vector.

Associating OCRs with Target Genes
Data normalization and aggregation: We defined ‘‘expressed’’ genes as those with at least 10 reads in at least one cell population.

Using this filter, we removed lowly expressed genes, and retained expression data for 15,601 genes. This filtered gene expression

data was then log transformed, quantile normalized, and averaged across replicates. Similarly, ATAC-seq data was filtered

to exclude OCRs with low intensity (BH adjusted MACS2 p value > 0.05). The intensities across the cell populations were log
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transformed, quantile normalized, and averaged across replicates.We excluded Stromal cells from this analysis: because of the large

biological differences, data from this population has very different distributional properties compare to the others.

Association analysis: In simple association analysis, for each expressed gene, we identified all OCRs that are within 1Mb of the

gene’s TSS. Then, for each gene and ‘‘cis’’ OCR pair, we computed the Pearson correlation coefficient and the associated p value

to quantify the association between activity (intensity) of theOCR and expression level of the gene across all 81 cell populations (sam-

ples). We used Bonferroni correction, to adjust the resulting p values. In addition, we used stepwise regression to identify indepen-

dently associated OCRs nearby each gene. For each gene, we performed stepwise regression analysis with the gene expression

level of a particular gene as outcome and the intensity of OCRs within 100Kb of the corresponding gene as the predictors. Similarly,

we accounted for multiple testing using Bonferroni correction.

Computing Aggregated OCR Scores
As demonstrated in Figure 3C, we observed a ‘‘distance biased’’ relationship between OCR intensity and gene expression levels,

whereby those cisOCR that are closer to TSSs are more strongly associated with gene expression levels. On the basis of this obser-

vation, we constructed an aggregated OCR score for each gene as the inverse weighted sum of OCR intensities within 100Kb of its

TSS. More specifically, for a given gene, each OCR within 100Kb of the gene’s TSS was given a weight 1/d where d is the absolute

distance (in bp) between the gene’s TSS and the center of the OCR.

Annotating OCRs with motifs
To annotate OCRs with putative transcription factor binding motifs, we used the motifmatchr package as part of the chromVAR suite

of tools (Schep et al., 2017). Motifs were defined from a set of curated mouse position weight matrices (PWMs) from the cisBP data-

base (http://cisbp.ccbr.utoronto.ca/) publicly available at (https://github.com/buenrostrolab/chromVARmotifs). For each OCR and

motif pair, we determined a binary annotation for compatibility of the motif PWM in the mm10 reference sequence from the OCR.

Specifically, our background nucleotide frequency was the total nucleotide content over all OCRs, and a motif match was called

for sequences with a p value < 5x10̂-6. Note that these choices are identical the defaults provided in the motifmatchr package.

Associating Aggregated Motif Scores with Transcription Factor Expression
Deviation scores, referred to as ‘‘TFBS accessibility scores’’ throughout the text, were calculated using chromVAR with the default

parameters (Schep et al., 2017) and the chromVAR motif database ‘‘mouse_pwms_v2.’’ To compute the correlation between scores

and TF expression we excluded epithelial cells whose patterns were too divergent, then filtered TFs for motif-TF expression pairs,

wherein the maximum TF expression in a measured cell type was greater than 4 (log2 scale), resulting in 430 TFs (see Table S5G

for the full list of TF motif and expression pairs). To calculate correlation between deviation scores and TF expression, log2 trans-

formed gene expression counts were correlated (Pearson) to raw deviation scores. To calculate the statistical significance of the cor-

relation two permutation tests were performed: we either permuted the sample labels or the TF labels (100 permutationswith replace-

ment), P values were calculated using a z-test comparing the observed TF motif-expression correlation coefficient to the permuted

correlation coefficient. Reported values represent the max (least significant) of the two permutation approaches, TFs with P values

less than 0.1 are called as significant. Notably, we found the two permutation approaches provided correlated P values however,

permuting TFs labels generally provided less significant P values.

To compute correlation for myeloid and lymphoid TFs, the same approach was repeated for samples identified as

lymphoid (LTHSC.34-.BM; LTHSC.34+.BM; STHSC.150-.BM; MMP4.135+.BM; preT.DN1.Th; preT.DN2a.Th; preT.DN2b.Th;

preT.DN3.Th; DN4.Th; T.ISP.Th; T.DP.Th; T.4.Th; T.4.Nve.Sp; Treg.4.25hi.Sp; Treg.4.FP3+.Nrplo.Co; T.8.Th; T.8.Nve.Sp;

T8.TN.P14.Sp; T8.TE.LCMV.d7.Sp; T8.MP.LCMV.d7.Sp; T8.Tcm.LCMV.d180.Sp; T8.Tem.LCMV.d180.Sp) or myeloid (Mo.6C+

II-.Bl;Mo.6C-II-.Bl; MF.PC;MF.RP.Sp; MF.Alv.Lu;DC.103+11b-.SI; DC.103+11b+.SI; DC.4+.Sp;DC.8+.Sp; MF.microglia.CNS;

GN.BM;GN.Sp;DC.pDC.Sp; MF.226+II+480lo.PC; MF.ICAM+480hi.PC) cell types.

Motif Enrichment in TSS
To determine motifs associated with DE-logic and TSS-logic genes identified from the variance components analysis (Figure 2), we

performed two Fisher Exact tests per-motif. For each of the 15,600 expressed genes, we determined all motif matches from themotif

collection within 1kb upstream of the annotated TSS. We then determined which motifs were enriched in the set of 943 TSS-logic

genes from a first set of Fisher Tests (y axis Figure 2C), or enriched in the set of 4,409 DE-logic genes in a second set of Fisher Tests

(x axis Figure 2C).

To assess of motif enrichment in selected sets of OCRs in the myeloid and T cell lineages (Figures 6 and S4) we employed a para-

metric test usingmotif frequency distributions calculated fromGC-content matched background sets of OCRs, otherwise referred to

as ‘‘chromVAR z-test for motif enrichment.’’ First, after identifying OCRs to be tested (i.e., GN specific OCRs), 200 sets of GC-content

matched OCRs were selected, using the ‘getBackgroundPeaks’ function from chromVAR, out of the robust set of 334,879 OCRs in

the study. Background frequency distributions for each motif were then calculated from the background OCR sets using the OCR to

motif pairing described above. Signed P values were then determined by the probability of obtaining the test set motif frequency in

the background distribution and multiplying by the sign of the direction of effect, assuming a normal probability distribution for the

background.
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Analysis of Myeloid Lineage
Myeloid clustering and peak selection: OCRs were filtered for only those detected in at least one myeloid cell sample (BH adjusted

MACS2 p value < 0.05; 215,583 peaks). The filtered peak signals (log2 + 1) were used for hierarchical clustering with 1 – Pearson

correlation distance values and average linkage between clusters. Cell groups were formed by performing a tree cut on the dendro-

gram at a distance height of 0.21. Sets of peaks for each cluster were then identified by looking either for peaks specifically detected

in a given cell group and no other myeloid cell types or for peaks with a minimum log2 peak signal fold change greater than 2 of that

group compared to all other myeloid cells.

Myeloid motif enrichment: chromVAR z-test motif enrichment was performed on the selected sets of peaks for each group. Only

the top 15 or fewer motifs having an unadjusted log10 signed p value greater than 5, and linear normalized gene counts greater than

100 in the population showing the enrichment were displayed in Figure 6B. SI macrophages not displayed due to lack of

sequencing data.

cDC comparisons: Peaks for CD4 and CD8 DCs were selected by looking for peaks that were detected in one subset and not the

other (BH adjusted MACS2 p value < 0.05), a minimum peak signal of 4, and a log2 peak signal fold change greater than 2 between

the two cell types. chromVAR z-test motif enrichment was then run on these sets independently. The same analysis was run between

the CD103+CD11b+ and CD103+CD11b- DC populations in the SI.

Analysis of T Lineage
We identified 836 ‘‘T cell differentiation genes’’ whose expression varied the most during the T cell differentiation by combining the

following groups: 1) 543 differential expressed genes by computing the mean and coefficient of variation from 12 cell populations

along the T lineage ranging from MPP4.135+.BM to T.4.Nve.Sp and T.8.Nve.Sp and fitting generalized linear model on mean and

squared CV (top 5% variable of the expressed genes); 2) 345 CD4 T cell related genes whose expression are significantly different

between (MPP4 and STHSC) and (T.4.Th and T.4.Nve.Sp), (FC > = 5 or % 0.2, P.value % 0.05); and 3) 358 CD8 T cell related genes

whose expression are significantly different between (MPP4 and STHSC) and (T.8.Th and T.8.Nve.Sp), (FC and P.value same as 2).

Then, to examine the associated OCRswith these T cell genes, we targeted the most varied 1,232 OCRswithin 10Kb from the TSS of

these genes (TSS-OCRswere excluded and of 4,105 significant OCRswith P.value% 0.05 in at least one population. For the analysis

of Figure 5B, we excluded the constitutively open OCRs, and selected the 30%OCRs with highest variability through the T cell data-

set (by fitting generalized linear model on mean versus squared CV of ATAC-seq signals).

For the analysis of OCR activation, we focused on the DE-OCRs with the highest positive correlation to each gene by computing

Pearson’s correlation between ATAC-seq signal and the corresponding gene expression within 12 T cell populations spanning dif-

ferentiation from MPP4.135+.BM to T.4.Nve.Sp populations (because some genes had no correlated OCR within 10 Kb, 429 genes

were retained). We then determined the population in which ATAC-seq signal and gene expression exceeded a 50% maximum and

fell below 50%of themaximum along T cell differentiation. Geneswere counted for the respective timing of OCR and gene activation/

inactivation and represented as bubble plots in Figure 4B. Genes in which the expression was already maximum in MPP4.135+.BM

progenitors were not considered in the analysis.

To relate TF expression and motif accessibility (Figures 7A–7C), OCRs containing a TF motif were selected from the table of sig-

nificant OCRs (P.value% 0.05 in at least one population) and 1,000 OCRswith the highest motif score were clustered using k-means.

For TF motifs where ChIP-seq data are available at the NCBI GEO database, raw data were downloaded (https://www.ncbi.nlm.nih.

gov/geo/, SRR4431502 and SRR4431506 for RORg and SRR499696 �SRR499708 for Pax5) with a corresponding control data and

analyzed by 1) mapping to mm10 reference using bowtie2, 2) discarding reads of non-unique mapping (samtools view -q 30), 3)

removing duplicated reads by Picard.MarkDuplicates, 4) counting number of reads overlapping the OCRs, 5) normalizing reads

by RPM (reads per million mapped reads) and 6) computing ChIP-seq signal as fold changes (ChIP-seq samples /control) after add-

ing a pseudo count of 0.1.

FoxP3 Analysis
ChIP-seq datasets (Kitagawa et al., 2017), Database accession DRA003955) for H3K27Me3, H3K27Ac, H3K4Me1, H3K27Me3,

Mediator and Smc1a (Cohesin) in Tregs were mapped to mm10 genome using bowtie. ChIP-seq peaks were called using HOMER

(http://homer.ucsd.edu/homer/) with corresponding biological replicates and respective input controls. Additionally, H3K4Me1

ChIP-seq data was analyzed in the same manner for Tconv cells [(Placek et al., 2017), GSE69162]. A robust set of FoxP3 ChIP-

seq binding sites were previously defined in Treg cells (Kwon et al., 2017). Briefly, fastq files (GSE40684, DRA003955) were mapped

to the mm10 reference genome using bowtie. FoxP3 peaks from both studies were called using HOMER findPeaks function with an

FDRof 1%using the parameter (-style factor) and respective input background peaks. Intersection of FoxP3 peakswere derived from

both datasets Intersection of FoxP3 peaks were derived from both datasets using the BEDtools intersect function with a 50% recip-

rocal overlap requirement, yielding 5,047 robust FoxP3 peaks. Our analysis maps the cis-regulatory landscape during T cell differ-

entiation for the top 2,000 FoxP3 ChIP-seq binding sites. FoxP3 peaks were parsed into promoter-proximal (920) and distal (1080)

OCRs. Treg ChIP-seq histonemark and TF data were used to annotate all 2,000 FoxP3 peaks by binarizing each chromatin feature as

being absent or present in each respective FoxP3 peak. Distal FoxP3 peaks were ordered based on accessibility differences

Treg/LTHSC and Treg/DP. Distal FoxP3 OCRs were then parsed into constitutive (no differences in accessibility during T cell
Cell 176, 897–912.e1–e12, February 7, 2019 e11
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differentiation; 860 peaks) or dynamic (> 2 fold ATAC-seq signal in at least one cell type upstream of Tregs; 220 peaks). TF motif

enrichment was performed on FoxP3 constitutive and distal OCRs using chromVAR functions.

DATA AND SOFTWARE AVAILABILITY

The GEO accession number for the RNaseq and ATACseq data reported in this paper is GSE100738. Processed ATAC-seq data and

called peaks can be found at:

https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv

Additional resources
The data can be visualized in the UCSC genome browser, the link to these data can be found here: http://rstats.immgen.org/

Chromatin/chromatin.html.
e12 Cell 176, 897–912.e1–e12, February 7, 2019
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Figure S1. Related to Figure 1

(A) Representative FACS page demonstrating cell isolations for profiling. The entire collection is assembled in a very large PDF which can be consulted at http://

www.immgen.org/ATAC.Sort2017.pdf.

(B) Relationship between data depth and inter-replicate correlation. Left: Inter-replicate correlations for ATAC-seq signals in OCRs for splenic B cells (21 rep-

licates of B.Sp, generated in different labs). Blue dots: optimal relationship between sequencing depth and inter-replicate correlation, computed by iterative

subsampling of the entire merged B.Sp data. Subsampled data were applied to simulate the correlations in shallower depth and the trend line by a logistic

regression model depicted in green. Blue dots indicate the correlations after different subsampling from all merged data with the trend line in blue. Right: Inter-

replicate correlations for cell types employed in the analysis. The green line and the blue dotted line in the left panel are superimposed.
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Figure S2. Related to Figure 1

Pile-up traces of ATAC-seq signals in Itgax locus. Blue bars in the first row indicate the positions of identified peaks (Pval % 0.05) and the graph in the 2nd row

conservation score among vertebrates. RNA expression for Itgax (Cd11c) gene are indicated by barplots with * where RNA-seq data was not acquired.



Figure S3. Related to Figure 2

(A) Summary of variance components results for each expressed gene using a single variance component of cell type relatedness from open chromatin data.

(B) Results of variance components model for two permuted matrices per gene model, showing minimal gene expression explained. Compare to Figure 2B.

(C) Attributes of genes where 99% of expression variance could be explained by DE (blue; n = 4,409) or TSS (green; n = 955) covariance. Genes in red (n = 223)

had > 99% of variance unexplained from the variance components model. Shown are boxplots for promoter GC content, transcript inequality measured by the

Gini Index, and mean log2 gene expression.

(D) Histogram of number of independent associated OCRs per gene. To determine independent associations, stepwise regression was used and the associated

p values were adjusted for multiple testing using the Bonferroni approach.
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Figure S4. Related to Figure 4

(A) Pile-up traces of ATAC-seq signals around Cd4 locus. Blue bars in the first row indicate the positions of identified OCRs and the graph in the 2nd row

conservation score among vertebrates. RNA expression for Cd4 gene are indicated by barplots. LCR/E4T: locus control region/thymocyte enhancer, E4M:

maturity enhancer, S4: silencer, E4P: proximal enhancer, E4D: distal enhancer

(B) TF motif enrichment (Left) normalized gene expressions for differentially expressed genes displayed after k-means clustering, same as Figure 4A (Right)

Enriched TF binding motif in most variable OCRs within 10Kb from TSS for genes in each cluster (same set of OCRs as in Figure 4B) ChromVAR z-test motif

enrichment was performed and motifs having an p value greater than or equal to 0.05 are displayed after k-means clustering.
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Figure S5. Related to Figure 5

(A and B) Correlation of expression and TF motif accessibility scores and permuted correlation, permuted either by their (A) sample labels or (B) TF labels.

(C) –log10 p values for TF expression and motif accessibility scores after permutation of the sample or TF labels.

(D) Hierarchical clustering for significantly correlated TF motif accessibility scores, motif name is labeled, motif family is denoted by parentheses.

(E and F) Correlation by –log10 p value of TF expression and motif accessibility scores filtering for (E) myeloid or (F) lymphoid samples.
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Figure S6. Related to Figure 6

(A) ChromVAR z-test motif enrichment for distinct peaks between CD103+CD11b+ and CD103+ CD11b- DCs.

(B) Mean Ehf mRNA counts from RNA-seq data in all samples profiled.
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Figure S7. Related to Figure 7

(A) Constitutive chromatin accessibility (log2 ATAC-seq signal) for FoxP3 bound TSS OCRs (920). ChIP-seq data in Tregs for H3K27Ac, H3K4Me1, H3K4Me3,

H3K27Me3, Mediator and Cohesin are marked as being present or absent for each respective TSS OCR.

(B) Chromatin accessibility (log2 Treg/Tconv ATAC-seq signal) and H3K4Me1 ChIP-seq (log2 Treg/Tconv ChIP-seq signal) from Treg and Tconv cells, reflects a

shift in activity for dynamic FoxP3 OCRs.
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