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Systems biology approaches that utilize large genomic data sets hold great potential for
deciphering complex immunological process. In this paper, we propose such an approach to
derive informative modules and networks from large gene expression data sets. Our approach
starts with the clustering of such data sets to derive groups of tightly co-expressed genes, also
known as co-expression modules. These modules are then converted into co-expression
networks, and combined with transcriptional regulatory and protein interaction data to
generate integrated networks that can help decipher the regulatory structure of these
modules. We use this approach to derive the first set of modules and networks focused on
dendritic cells (DCs). These cells are responsible for sampling the local environment to inform
the adaptive immune system about peripheral stimuli, thus leading to the induction of an
immune response. Using the ImmGen gene expression data set, we derive co-expression
modules and integrated networks for the pDC, cDC and CD8+ DC subsets. In addition to
recapitulating genes known to regulate the functions of these subsets, these networks reveal
several novel genes and interactions that might have important roles in DC biology.
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1. Introduction

Immune responses result from a complex interaction that
relies on an elaborate and dynamic communications network
that exists among the many different immune cell types
that patrol the body. Although several of the cellular and
molecular cues that control the induction of successful im-
mune responses have been identified, there is an immense
need for a systems-level understanding of how the different
components of immune cells interact in the steady state and
in response to different stimuli. To address this need, several
groups have started utilizing the recent wave of biotechnol-
ogies to profile the immune system at the molecular level
and analyze the related data to obtain novel insights (Gardy
tics andComputational
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dey).
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et al., 2009; Germain et al., 2011). In particular, the ImmGen
consortium has profiled the genome-wide expression patterns
in all the cell types in the immune system of Mus musculus
(mouse), thus making available an unprecedented resource
for such studies (Heng and Painter, 2008). This and other
data sets have been utilized by some recent rigorous compu-
tational systems biology approaches that have built models
of how the different components of the immune system
function individually and in concertwith the others (Amit et al.,
2009; Germain et al., 2011; Novershtern et al., 2011; Benichou
et al., 2012). However, the findings of these studies have largely
been limited to the immune cells where rich data sets are
available, such as T- and B-cells.

An important component of the immune system whose
understanding has not benefitted much from these studies
is dendritic cells (DCs) (Banchereau and Steinman, 1998).
DCs are one of two types of mononuclear phagocytes that
populate most tissues, the other being macrophages. The term
“phagocyte” derives from the Greek word “phago”, meaning
“to devour”, and reflects the ability of DCs and macrophages to
capture exogenous proteins and damaged or dying cells. In
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1 The terms “cluster” and “module” will be used interchangeably in the
rest of this paper.
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contrast to macrophages, whose main role is to scavenge
phagocytosed material, DCs sample the local environment
to inform the adaptive immune system about peripheral
cues. They constantly transport environmental proteins
broken down into small peptides termed “antigens” to the
lymph node. There, they present self and foreign antigens
on MHC-class I- and MHC-class II peptide complexes on
the cell surface to resident lymphocytes and produce large
amounts of activating cytokines (Guermonprez et al., 2002;
Trombetta and Mellman, 2005) to promote the differentiation
of antigen-specific effector immune responses (Steinman and
Banchereau, 2007). In the case of the presentation of self-
antigens, DCs cause the differentiation of antigen-specific
T regulatory cells or the depletion of auto-reactive T cells
1(Steinman et al., 2003). MHC-class I andMHC-class II peptides
are presented by DCs to induce a CD8+ or CD4+ T cell
response respectively. CD8+ T cells are cytotoxic T cells, which
specialize in the elimination of infected cells and thus are
geared to respond to intracellular pathogens, while CD4+
T cells initiate antibody production of antigen-specific
antibodies by B cells to respond to extracellular pathogens.
Clearly, DCs play a key role in directing effective immune
responses. However, the study of DCs has been hampered
due to their rarity within tissues and, until recently, the
inability to distinguish DCs from other tissue phagocytes
such as macrophages.

Recent data have established that DCs consist of distinct
subsets with different abilities to process antigens, respond
to environmental stimuli and engage distinct effector lym-
phocytes (Heath and Carbone, 2009). The DC population
can be divided into the following subsets based on ontogeny
and function: plasmacytoid DCs (pDCs) and classical DCs
(cDCs). These cells arise from different origins in the immune
cell lineage and serve specialized immunological functions.
pDCs secrete large amounts of the antiviral interferon alpha
(IFN-α) cytokine in response to the stimulation of pathogen
recognition receptors TLR7 and TLR9 to initiate T cell immunity
against viral antigens (Reizis et al., 2011). These cells express
low levels of MHC-II and the co-stimulatory cytokines needed
to activate T cells in steady state tissue. In contrast, cDCs
express high levels of MHC aswell as co-stimulatorymolecules
and are the only hematopoietic cell population with the ability
to stimulate naïve T cells in the steady state. Other hematopoi-
etic populations can only stimulate T cells that have already
been exposed to antigen, or “memory T cells”.

In lymphoid tissue, cDCs consist of two main subsets,
namely the CD8+ and CD8– DCs. CD8+ cDCs excel in the
cross-presentation of cell-associated antigens and are most
potent at stimulating CD8+ T cells to induce a Th1 response
(Coombes and Powrie, 2008). This population relies on the
cytokine receptor Flt3 and the transcription factors ID2, Batf3,
and Irf8 for development. In contrast, CD8– cDCs are most
potent at inducing CD4+ T cells to induce a Th2 response
(Heath and Carbone, 2009). This population requires Irf4
for their development (Reizis et al., 2011). Recent data
established that CD8– DCs are very likely heterogeneous and
include at least two main populations that are differentially
controlled by Notch2 signaling (Lewis et al., 2011), thus
making them very difficult to study.

Owing to the low numbers of DCs in tissues, the difficulty
of isolating them from peripheral tissues, and the general
expense of these procedures, most DC studies have been
limited to the spleen with a limited number of replicates.
Through targeted, generally low-throughput, studies, several
genes have been identified to be involved in the functioning
of DCs and their response to antigens. These genes, several of
which are known regulators, include Relb, Irf8, Id2 and Flt3
(Shortman and Heath, 2010). Recent studies have employed
high-throughput technologies, such as microarrays, to un-
derstand DC biology in vivo. This has greatly accelerated
the study of DCs by 1) identifying subset-specific regulators,
including Batf3 (Hildner et al., 2008), and most recently,
Zbtb46 (Meredith et al., 2012; Satpathy et al., 2012),
2) showing that DC subsets differentially express important
surface receptors and regulators (Edwards et al., 2008) and
3) that genes characteristic of the various DC subsets are
conserved (Contreras et al., 2010). However, these studies
utilize single gene analyses, such as measuring differential
expression, to identify genes important for the functioning
of DCs (Bar-On et al., 2010; Crozat et al., 2010; Manicassamy
et al., 2010; Chevrier et al., 2011). Clearly, such approaches
do not reveal the interactions between genes that are equally
critical for this problem, as has been done for other immune
cell types by systems biology approaches (Amit et al., 2009;
Germain et al., 2011; Novershtern et al., 2011; Benichou et
al., 2012).

Motivated by the need to build models for DC function
that reveal cellular interactions in addition to important genes,
we propose a systematic approach that derives detailedmodules
and networks from large-scale gene expression data sets. For
this, we use the WGCNA algorithm (Langfelder and Horvath,
2008) to cluster the relevant portion of the ImmGen gene
expression data into groups of tightly co-expressed genes, also
known as co-expression modules.1 We further convert these
modules into co-expression networks, and integrate themwith
transcriptional regulatory data from the Molecular Signature
Database (MSigDB) (Subramanian et al., 2005) and protein
interaction data from BioGRID (Stark et al., 2011) to
generate integrated networks that can help decipher the
regulatory structure of these modules.

We use this approach to derive the first set of DC-focused
modules and networks (to the best of our knowledge). For
this, we build on Miller et al.'s (2012)'s work, where several
insights were revealed about DC subsets, specifically cDCs,
pDCs and CD8+'s, as well as overall DC functioning. Using
their proposed core signatures for these subsets, we conduct
an extensive evaluation of our pipeline to identify the most
enriched modules that reveal informative integrated net-
works consisting of many genes and their co-expression and
regulatory interactions. A detailed examination of these
networks and modules highlights several novel genes, as
well as interactions, that may explain the functioning of cDC,
pDC and CD8+ cells, and thus add valuable knowledge to DC
biology.

In summary, through the example of dendritic cells, we
demonstrate how established algorithms and data sources
can help generate actionable hypotheses about critical immu-
nological processes, especially involving cell types that are
under-represented in data sets.
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2. Materials and methods

Fig. 1 shows the different steps of the analysis pipeline
and their inputs and outputs. Below, we explain each of the
steps of this pipeline and the rationale behind them.
2.1. ImmGen data and modifications

The ImmGen data set (Heng and Painter, 2008) was pre-
pared by sorting multiple replicates of 262 cell populations
(1 population=1 cell type extracted from 1 tissue) from mice
and profiling their genome-wide gene expression profiles
using the Affymetrix Mouse Gene 1.0 ST array. The raw
data were normalized using the RMA algorithm, resulting in a
gene expression data matrix spanning 25,194 genes and 853
samples.

For the purpose of this study, we eliminated several
samples corresponding to cell populations that could not be
classified clearly as either DC or non-DC, reducing the size
of the data set to 680 samples. Of these, 56 samples cor-
responded to DCs (11 pDCs, 45 cDCs and 28 CD8s (subset of
cDCs)), and 624 to non-DC cell types (T-cells, B-cells, etc.).
Due to this significant imbalance between the two categories,
we anticipated the resultant analysis results to be biased
in favor of the non-DC cell types (Xiong et al., 2009). Thus, to
reduce the potential effect of this bias, we averaged the
expression profiles of all the replicates for each of the non-DC
cell populations into one sample each, thus reducing their
number to 190 samples. Evaluation of the clusters derived from
this “compressed” data set demonstrates that this indeed
Fig. 1. Our analys
improved our ability to discover more DC-specific modules
(Section 3.1).
2.2. Module discovery using WGCNA

The Weighted Correlation Network Analysis (WGCNA)
algorithm (Langfelder and Horvath, 2008) and its variants
(Zhang and Horvath, 2005) have proven to be very effective
for deriving groups of highly co-expressed genes, also referred
to as co-expression modules, from large gene expression
data sets (Miller et al., 2010; Voineagu et al., 2011). WGCNA
begins with a matrix of the absolute value of the Pearson
correlation coefficients between all gene pairs, and converts
this matrix into an adjacency matrix using a power function
f(x)=xβ. The parameter β of the power function is determined
in such a way that the resulting adjacency matrix (i.e., the
weighted co-expression network) is approximately scale-free,
a widely accepted property of biological networks. To measure
how well a network satisfies a scale-free topology, we use
the fitting index (Zhang and Horvath, 2005), i.e., the model
fitting index R2 of the linear model that regresses log(p(k)) on
log(k), where k is connectivity and p(k) is the frequency
distribution of connectivity. The fitting index of a perfect
scale-free network is 1. In our analysis, we selected the smallest
β that leads to the highest R2 (an approximately scale-free
network), and this value turned out to be 7 (R2=0.769) and 6
(R2=0.723) for the compressed and original DC expression
data sets respectively.

To explore the modular structures of the co-expression
network, the adjacency matrix is further transformed into a
is pipeline.
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matrix of topological overlap measures (TOM) (Zhang and
Horvath, 2005). The TOM score between genes i and j is
defined as:

TOM i; jð Þ ¼ lij þ aij

min ki; kj
� �

þ 1−aij

Here, aij is the adjacency score between i and j (calculated
as described above), ki=∑uaiu (sum of edge weights) and
lij=∑uaiuauj (sum of the product of edge weights involving
all common neighbors). Thus, TOM measures the strength
of the association between two genes in a graph based on
the ratio of the similarity of their common neighborhood
(numerator) to the smaller of the individual neighborhoods
of the two nodes (denominator). It also gives higher weight
to genes that are already strongly associated (high aij) in the
input adjacency matrix.

WGCNA finds the final modules of highly co-expressed
genes using average linkage hierarchical clustering to group
genes based on this topological overlap matrix. It then dy-
namically groups closely related modules in the resultant
dendrogram using a dynamic cut-tree algorithm (Langfelder
et al., 2008). Previous studies (Ravasz et al., 2002; Zhang and
Horvath, 2005) have shown that WGCNA leads to more
cohesive and biologically meaningful modules than other
clusterings based on Pearson correlation due to its robust-
ness to noise and better ability to capture indirect associa-
tions between genes. This motivated the use of this module
discovery algorithm in our study.

We applied the WGCNA algorithm (Langfelder and
Horvath, 2008) to our compressed data set to identify such
modules of co-expressed genes. The algorithm was applied
with a block size of 2000 and merge cut height of 0.2 We also
generated several sets ofmodules by setting theminModuleSize
parameter to 10, 20 and 30, since this parameter appeared
to affect the size and number of the modules substantially. For
comparison, we also derived modules from the original un-
compressed data set using WGCNA with the same parameter
settings, as well as using hierarchical clustering with a very
similar methodology.

2.3. Functional analysis of modules

To understand the direct relationship of these modules
with the immune system and the functioning of dendritic
cells, we next investigated their significance in the context of
Miller et al.'s (2012) results about DC biology. Here, through
a principal component analysis of the ImmGen data set, the
authors showed that DC segregated into distinct populations,
specifically cDCs, pDCs and CD8+ cells. By comparing these
subsets against their closest cell type in the principal compo-
nent map, the authors identified core signatures that consist
of genes that are significantly differentially expressed between
the two classes for each of these subsets. Using the Fisher
exact test, Bonferroni correction (correction factor=number of
modules discovered) and the set of genes clustered as the
2 See Langfelder and Horvath (2008) for the details of these parameters of
WGCNA and its R implementation. The default values in the implementation
were used for the other parameters not mentioned here.
background set, we evaluated howmany of themodules found
using WGCNA (and hierarchical clustering) were enriched
for these core signatures (corrected p-valueb0.05), and used
this number to identify the most informative set of modules
to study further. Note that although we are using the core
signatures derived from the same data set for this evaluation,
the primary purpose of the modules is to uncover genes and
interactions critical to DC function. The signatures are used
only as a guide towards achieving this larger goal.

In the most informative set of modules, we further
identified one module for each DC subset for further study,
and evaluated the specificity of these modules to the cor-
responding DC subset. For this, we calculated themedian of the
individual Student's t-test p-values of the genes constituting
each module as a measure of its differential expression
between the DC subset assigned and all the other samples in
our compressed data set. The sample labels (1 for DC subset
and 0 for the others) were then randomly permuted 1000
times, and the differential expression measure of the module
recomputed. The final differential expression p-value of the
module was then assigned to be the fraction of random
permutations in which the measure was lower than the value
for the original sample labels. Once we ensured that these
modules were indeed specific to the corresponding DC subset,
we chose them as the representative modules to be further
analyzed in terms of their co-expression and regulatory struc-
ture. Note that although we focus only on these modules in
the rest of the paper, similar analyses can be performed
for the other enriched modules as well. Those analyses are
out of the scope of this paper, butwe intend to perform them in
future work.

2.4. Network and regulatory analysis

As the first step towards explaining the modules selected
above, we conducted a regulatory analysis of these modules
by identifying transcription factors (TFs) that are predicted
to regulate genes in these modules. For this, we identified
the TFs in theMolecular Signature Database (MSigDB) (Mootha
et al., 2003; Subramanian et al., 2005) whose known target
genes had a significant overlap (Fisher's exact test, Benjamini–
Hochberg correction) with the genes in the module being
considered. TFs with p-values less than 0.05 were considered
to be regulating the expression of their target genes in the
module, which are also included in the MSigDB search result.
The representation of the connections between these TFs and
their targets in the modules by directed edges produced
regulatory networks for these modules, which provided the
first indications for genes and regulators important for the
corresponding DC subset.

These networks, although very useful, do not cover too
many genes in the modules, owing to the general lack of
regulatory information in public databases. Thus, to obtain
a more complete view of the interactions underlying DC
function, we converted the modules into co-expression
network. Constituting each module discovered by WGCNA
is a gene-by-gene matrix containing the TOM score for each
pair of genes included in the module. This value indicates
the strength of the co-expression link between the two
genes in the data set analyzed, and thus can be used as an
indication of how these genes are functioning together in the



Table 1
Statistics about the number of all the modules and the DC-enriched ones
discovered by WGCNA for different choices of the data set and values of
minModuleSize.

# Enriched modules

Data minModuleSize # Modules cDC pDC CD8 Any

Original 10 166 5 2 1 7
20 120 5 2 1 7
30 98 5 1 1 6

Compressed 10 218 8 1 2 10
20 152 7 1 1 8
30 104 4 1 1 5

Table 2
Statistics about the number of all the modules and the DC-enriched ones
discovered by hierarchical clustering for different choices of the data set and
values of minModuleSize.

# Enriched modules

Data minModuleSize # Modules cDC pDC CD8 Any

Original 10 147 3 1 1 4
20 64 2 1 1 3
30 40 1 1 0 2

Compressed 10 164 4 2 1 6
20 67 3 1 1 4
30 48 3 1 1 4
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corresponding DC subset. Treating these TOM values as
weights of co-expression edges, we combined the corre-
sponding set of co-expression edges with the TF-target links
identified earlier to create an integrated network for each
module. Where available, we also incorporated protein–
protein interactions obtained from BioGRID (Stark et al.,
2011) into the integrated networks. The resultant networks
were studied to identify genes and interactions that are
likely to play an important role in defining the function of
the corresponding DC subset, and thus would be promising
targets for experimental validation and further study.

3. Results

This section details the results of the evaluation of various
components of our analysis pipeline, and illustrates how our
approach can be used to discover potentially useful hypothesis
about biological processes.

3.1. Evaluation of choices for the pipeline

Our analysis pipeline involved several choices that can
influence the quality of modules and networks derived from
the complex ImmGen gene expression data set that spans
thousands of genes and hundreds of immune cell types. Two
of the most critical choices were:

i. Whether to use the original data set, that contained a much
larger number of non-DC samples as compared with DCs or
its compressed version, where the fraction of DC samples is
increased while retaining the essential data for the other
cell types?

ii. Which clustering algorithm – WGCNA or the more com-
monly used hierarchical clustering – to use for discovering
clusters?

To evaluate these choices, we derived clusters using
WGCNA and hierarchical clustering, both from the original
and the compressed data set. The same R implementation
ofWGCNAwas used for hierarchical clustering aswell, the only
difference being that Pearson's correlation coefficient was used
as the similarity measure instead of TOM. We set the value of
the minModuleSize parameter to 10, 20 and 30 to examine its
influence on the number, size and quality of the modules
obtained. The resultant sets of modules were then evaluated in
terms of how many DC-enriched modules they include, as
described in Section 2.2.

Tables 1 and 2 show the results of this evaluation for
WGCNA and hierarchical clustering respectively. In both the
tables, it can be seen that, at the same value of minModuleSize,
the compressed data set produces several more modules
enriched with the core signature of at least one DC subset
(last column), thus demonstrating the utility of the compres-
sion step of our pipeline. Furthermore, comparing the two
tables, WGCNA discovers several more DC-enriched modules
than hierarchical clustering, almost regardless of the value of
minModuleSize. For example, WGCNA and hierarchical clus-
tering discover 152 and 164 modules from the compressed
data set at minModuleSize=20 and 10 respectively. Despite
the slightly smaller number of modules, 8 of the WGCNA
modules are DC-enriched, as against 6 of the hierarchical
clustering modules. This better ability of WGCNA to discover
more meaningful modules is due to its use of the TOM
measure, which is better able to resist the noise in large gene
expression data sets as compared with direct similarity
measures like Pearson's correlation coefficient (Zhang and
Horvath, 2005). Finally, setting the value of minModuleSize
to 10 produces the most DC-enriched modules for both data
sets and clustering algorithms, since this value produces the
smallest modules that are more likely to capture specific
biological processes (Pandey et al., 2009).

Previous studies usingWGCNA for discovering co-expression
modules pre-selected a subset of genes to reduce the adverse
effects of including genes with invariable and noisy expression
profiles (Miller et al., 2008; de Jong et al., 2010; Ye et al., 2012).
To test this approach for our study, we selected several subsets
of genes whose expression profiles showed the highest variance
in the compressed data set and discovered WGCNA modules
from the resultant data sets. Table 3 shows the results of the
DC enrichment evaluation on the modules discovered. As the
number of selected genes increased, the number of modules
discovered also increased naturally, but more interestingly, the
number of DC-enriched modules (last column) also increased,
with the full data set producing the most such modules.

Based on the results of these evaluations, we selected the
modules discovered from the compressed data set (all genes)
using WGCNA (minModuleSize=10) to study DC function
further.

3.2. Characteristics of DC-enriched modules

Table 1 shows that our pipeline is able to discover several
modules enriched for Miller et al.'s (2012) DC subset-specific
core signatures. To understand the functioning of these DC
subsets, we focused on the most enriched (lowest p-value)



Table 3
Comparison of the number of DC-enriched modules discovered using
different number of pre-selected genes from the data set.

# Enriched modules

# Genes # Modules cDC pDC CD8+ Any

25,194 (All) 218 8 1 2 10
15,000 173 7 1 1 8
10,000 117 7 1 2 9
8000 101 6 1 1 7
6000 90 5 1 1 6
4000 65 3 0 1 3
2000 29 0 0 0 0
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modules for each of these subsets. Table 4 lists various
statistics for the three representative modules so identified,
and Supplementary Table 1 contains all the member genes
for all these modules.

It is evident from Table 4 that these modules are very
highly enriched for the core signatures of the corresponding
subsets, as indicated by the very low enrichment p-values
and high fold changes. Furthermore, the differential p-values
of all these modules are very low (b10−3). This means that
the majority of the genes in these modules are significantly
differentially expressed between the corresponding DC
subset and other samples, thus showing that they are very
specific to the corresponding DC subset. This is significant,
since no information about the original DC subset of the
samples was used to derive these modules from the com-
pressed data set. We also tested these modules for enrichment
with Gene Ontology terms (Boyle et al., 2004), but were unable
to find any informative functions for them. This is most likely
due to the lack of annotations related to immunology in
general, and dendritic cell function in particular, in biological
knowledge bases.We hope that our detailed study of the genes
and interactions constituting these modules, discussed in
the next section, and other such studies will help fill this gap
in knowledge about immunological processes.
3.3. Network and regulatory analysis of DC-enriched modules

The statistical analysis of the representative modules
(Table 4) indicated their utility for studying DC biology.
However, this analysis does not provide much information
about the interactions between the constituent genes and with
other genes, such as transcription factors (TFs), that lead to the
corresponding functions being performed. Thus, we attempted
to explain the functioning of these modules in terms of these
interactions.

First, we identified the TFs regulating the expression of the
genes in each module by searching the Molecular Signature
Table 4
Details of modules found to be most enriched for DC subsets.

DC
subset

Enrichment
p-value

Enrichment
fold change

# Subset
genes

Differential
p-value

Size

cDC 0 42.39 16 b10−3 70
pDC 0 33.39 54 b10−3 428
CD8+ 0 119.46 14 b10−3 94

Fig. 2. Regulatory (TF-target) networks for the (A) cDC (B) pDC and (C) CD8+
representative modules discovered by our pipeline. Genes colored in blue are
found within the corresponding core signature, transcription factors from
MSigDB are colored yellow, predicted regulators not found inMSigDB searches
are colored pink and all the other genes are shown as green. Red directed edges
denote TF-target links.
Database (MSigDB). We identified 3 and 4 TFs for the cDC and
CD8+ representative modules using a p-value threshold of
0.05, but had to raise the threshold to 0.1 to identify 2
significant TFs for the pDC module due to its relatively large
size. Fig. 2 shows the directed networks representing the links

image of Fig.�2


Fig. 3. Integrated (co-expression, TF-target and protein–protein) network derived from the representative cDC module. Genes colored in blue are found within the
corresponding core signature, transcription factors fromMSigDB are colored yellow, predicted regulators not found inMSigDB searches are colored pink are and all the other
genes are shown as green. Undirected gray edges denote co-expression links between genes, red directed edges denote TF-target links derived fromMSigDB, and blue edges
denote protein–protein interactions. For visual clarity, only co-expression edges with TOM scores higher than 0.1 are included. The complete network can be found in
Supplementary Table 1.
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between these TFs and their targets in these modules. To
address the lack of sufficient TF-target information in public
databases, and to identify potentially non-regulatory interac-
tions between genes in thesemodule, we constructed networks
consisting of co-expression links between the constituent
genes. Treating the genes as nodes, the TOM score for two
genes as the weight of the edge between them, and the TOM
matrix as the overall adjacency matrix, each module can be
viewed as a co-expression network. This network can provide
very useful insights into the functioning of a module, since
coherent expression of two genes is a strong indicator of
them performing the same or similar functions. We also
incorporated the MSigDB-derived TF-target links, and protein–
Fig. 4. Integrated (co-expression, TF-target and protein–protein) network derived f
the corresponding core signature, transcription factors from MSigDB are colored yel
and all the other genes are shown as green. Undirected gray edges denote co-exp
derived from MSigDB. For visual clarity, only co-expression edges with TOM sco
Supplementary Table 1.
protein interactions from BioGRID into these networks to
obtain integrated networks for the representative modules,
details of which can be found in Supplementary Table 1.
Figs. 3–5 show these integrated networks corresponding to
the strongest co-expression links within the cDC, pDC and
CD8+ modules, where the links with TOM scores higher
than 0.1, 0.4 and 0.2 were included. This selection was done
to enhance visual clarity, as well as to focus on the strongest
co-expression links, which are the most likely to indicate
functional relevance. Some genes that are predicted to be
regulators in the mouse genome (Novershtern et al., 2011),
but may not be included in MSigDB, are highlighted (colored
pink) in these networks. Furthermore, all these networks
rom the representative pDC module. Genes colored in blue are found within
low, predicted regulators not found in MSigDB searches are colored pink are
ression links between genes and red directed edges denote TF-target links
res higher than 0.4 are included. The complete network can be found in

image of Fig.�3
image of Fig.�4


Fig. 5. Integrated (co-expression, TF-target and protein–protein) network derived from the representative CD8+module. Genes colored in blue are found within
the corresponding core signature, transcription factors from MSigDB are colored yellow, predicted regulators not found in MSigDB searches are colored pink are
and all the other genes are shown as green. Undirected gray edges denote co-expression links between genes and red directed edges denote TF-target links
derived from MSigDB. For visual clarity, only co-expression edges with TOM scores higher than 0.2 are included. The complete network can be found in
Supplementary Table 1.
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include many genes (colored in blue) included in Miller et al.'s
(2012) core signatures for the DC subsets, thus providing
some visual validation of the results in Table 4. Examining
the networks in detail provides several interesting pieces of
information about DC biology.

cDCs have a superior ability in comparison with all immune
cells to present antigen on bothMHC (major histocompatibility
complex) Class I and MHC Class II to induce a CD8+ and a
CD4+ T cell response respectively. They are the only pop-
ulation able to present antigen to naïve T cells to mount an
immune response and this ismade possible by their production
of key T cell skewing co-stimulatory cytokines, in addition to
their antigen presentation capabilities. However, the mecha-
nisms underlying both these cDC abilities are still unclear.
Intriguingly, the cDC TF network (Fig. 2(a)) identified the
signal transducers and activators of transcription Stat5a and
Stat6 as regulators of cDC. Furthermore, these genes, along
with Jak2, interact with the metalloproteinase Adam23 in the
integrated cDC network (Fig. 3). Jak2-deficient mice have
decreased numbers of cDCs and the remaining cDCs express
lower levels of cDC maturation markers, which include genes
CD80 and CD83 found in our representative module for this
subset. The loss of Jak2 signaling along with either Stat5a or
Stat6 leads to an impairment of the production of crucial
co-stimulatory cytokines TNFα and IL-12, thus leading to the
loss of cDC function (Zhong et al., 2010). The interaction of
these regulators withmembers of this module, captured by the
integrated network, may provide explanations for this obser-
vation, and insights into the regulatory functions of cDCs. This
network also includes known cDC regulators Batf3 and Zbtb46
(Hildner et al., 2008; Meredith et al., 2012; Satpathy et al.,
2012), aswell as the phenotypicalmarker Cd11c (Itgax) for this
subset (Hashimoto et al., 2011). Batf3 has been shown to be
expressed in all cDC populations, and the loss of this gene in
murine knockoutmodels selectively prevents the development
of CD8+ DC (Hashimoto et al., 2011). More such candidate
genes and mechanisms are expected to be discovered by
a detailed examination of the proposed cDC module and
networks.

pDCs produce paramount levels of IFN-a (Interferon-alpha)
in response to stimuli through TLRs (Toll-like receptors) 7
and 9 (Reizis et al., 2011). They have additionally been shown
to induce both CD4+ and CD8+ T cells and, conversely,
tolerance. These seemingly contradictory functions are likely
due to a wide array of surface markers that allow the pDCs
to respond uniquely to various stimuli and environments
(Reizis et al., 2011). In accordance with this theory, the pDC
module and network (Fig. 4) contain multiple genes known to
be involved in the various proposed pDC functions, including
IFN-a inducing genes Klra17 (Ly49Q) (Reizis et al., 2011) and
CD300c (Ju et al., 2008), aswell as the IFN-attenuating receptor
Siglec-H (Reizis et al., 2011). pDCs also express the CD4+T cell
stimulatory molecule Havcr1 (Rodriguez-Manzanet et al.,
2009), as well as high levels of Lag3 shown to be important in
the peripheral CD8+ T cell tolerance induction (Lucas et al.,
2011). The interactions of the predicted regulator Runx2,
which is highly specific to pDCs (Reizis et al., 2011), can help
identify its as yet undefined role in this DC subset. Further
examination of this module and its corresponding network can
highlight interactions between the genes discussed here, as
well as the other constituent genes with no known immune
function that can facilitate the better understanding of pDCs.

CD8+ DCs are a subset of cDCs specialized in the uptake
and cross-presentation of antigen from apoptotic cells on
MHC-I in order tomount a CD8+T cell response. In accordance
with this function, they produce the CD8+ T cell inducing
cytokine IL-12b (Rosenblum et al., 2010), as well as high levels
of TLR3, which binds to double stranded RNA found in
retroviruses that replicate intra-cellularly (Shortman and
Heath, 2010). The CD8+ integrated network (Fig. 5) includes

image of Fig.�5
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the corresponding genes Tlr3 and Il12b (Rosenblum et al.,
2010), thus providing evidence for the network's validity and
utility. Furthermore, this module includes Xcr1, a chemokine
shown to control CD8+ T cell effector differentiation (Dorner
et al., 2009). Pbx1, a predicted regulator of this module
(Fig. 2(c)) has been shown to be important in induction of
the T cell suppressing cytokine IL-10 production in response to
apoptotic debris. This may contribute to the tolerogenic
function attributed to DC in the steady state (Shortman and
Heath, 2010), thus indicating a role for Pbx1 in CD8+ function.
Finally, in addition to the statistical evidence discussed earlier,
these examples reveal that the CD8+ DC module is enriched
for genes involved in the cardinal function of DCs, antigen
processing, aswell as transcripts involved in lysosome function,
an organelle essential for antigen processing, further validating
our approach.

These specific instances indicate the utility of these
co-expression and regulatory networks for identifying new
genes and regulators that may control DC function and spe-
cialization in vivo. In addition, they provide a network or
system context for understanding how genes, both known and
novel, affect DC function by interactingwith or regulating other
genes.

4. Conclusions and discussion

In this paper, we reported the results of our module and
network analysis of the ImmGen gene expression data set, with
the goal of extracting novel insights about the functioning of
dendritic cells (DCs), as well as their subsets, namely cDC, pDC
and CD8+ cells. After compressing the non-DC component of
this data set, we applied the WGCNA algorithm to it to identify
modules (clusters) of co-expressed genes that are expected to be
involved in DC-related processes. In particular, several of these
modules are found to be significantly enriched for the core
signatures of the cDC, pDC and CD8+ subsets, and are also
significantly differentially expressed with respect to these sub-
sets.We conducted further network analysis of thesemodules by
viewing them as co-expression networks and integrating them
with transcription factor-target links derived from the MSigDB
database. This analysis highlighted several genes whose position
and interactions in the networks indicated their importance for
the functioning of the corresponding DC subset. Overall, having
such a network view for how different genes and regulators
interact with each other within a modular context can provide
novel insights into the mechanisms underlying immunological
processes in general, and DC function and differentiation in
particular.

Although our study did not include experimental valida-
tion, we believe that the proposed networks and modules
include several genes critical to DC function, especially the ones
for which literature evidence was presented. The proposed
networks can be analyzed in terms of their structure to
prioritize validation targets, some work on which is ongoing
in our group. The functional information obtained from such
analysis and validation can help address the general lack of
immunological information in public databases, such as Gene
Ontology, especially for themouse genome. Another effort that
can help in this direction is using our approach, which is not
specific to mouse DCs, to study other immune cell types from
other organisms as well, especially those under-represented in
studies and data sets. This will help identify organism-specific
factors influencing their immune systems.

Finally, although our approach was rigorous, it was limited
to the ImmGen gene expression data set. The approach,
as well as the results obtained from it, can become a lot
more powerful, if other omics data, such as those from next-
generation sequencing, proteomics and metabolomic tech-
nologies, are also incorporated into the pipeline. The use
of next-generation sequencing technologies, such as RNA-
Seq (Wang et al., 2009), can help expand the coverage of
transcripts as comparedwithmicroarrays. Such integration has
been very successful in numerous other areas (Hawkins et al.,
2010; Kasarskis et al., 2011). The resultant computational
and systems biology approaches will be immensely useful
for understanding the components of the immune system, as
well as the interactions between them. We expect a rapid
growth in this area in the time to come.

Supplementary data related to this article can be found
online at http://dx.doi.org/10.1016/j.jim.2012.09.012.
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