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Much of the gene expression profiles generated so far by the ImmGen project were 
obtained using hybridization to microarray supports. Preliminary tests and results supporting 
the choice of the Affymetrix 1.0 ST platform have been reported1. Here, we will document the 
data generation pipeline adopted for the project, the quality control (QC) steps and the criteria 
for data exclusion, as well as some of the basic analysis guidelines used to analyze expression 
across ImmGen data. The criteria evolved with experience and with the profiling of substantial 
numbers of cell-types, and those described are those adopted as of Feb 2012. Data and QC 
metrics for all ImmGen datasets as of this date are listed in Table 1. 

 
I. Data Generation 
Per ImmGen SOP, the final cytometric sorts (typically from 10,000 to 30,000 cells, 

although 10% of attempted samples were below 10,000 cells) were performed directly in Trizol 
(no more than 5.104 cells in 500 ul Trizol), frozen after 2 minutes, and sent to the ImmGen 
core team in Boston. RNA was prepared from the Trizol lysate by Chloroform extraction and 
isopropanol precipitation in the presence of Glycoblue carrier. The pellet was washed with 
ethanol, air-dried, and finally taken up in 12.5 µl dH2O. Early pilots showed that RNA 
quantitation by micro-spectrofluorimetry in preparations from the low cell numbers typical in 
ImmGen was rather unreliable, and not a valuable predictor of labeling efficiency and 
microarray data quality. Thus, each RNA sample were used in its entirety, without prior 
quantitation, decisions on whether to hybridize to the microarray made on the basis of the 
amount of ssDNA probe obtained. 



 

Fig. 2: Relationship between the yield of labeled ssDNA 
probe and the dynamic range of the resulting ST1.0 
data, across all ImmGen samples. Red dots are those 
that eventually failed QC, some because of poor 
dynamic range, others for contamination or other issues. 

 

Fig. 1: Relationship between the yield of intermediate 
cRNA and labeled ssDNA probe, for all ImmGen 
samples.  

Probe amplification and labeling and 
hybridizations were performed, for essentially 
all samples, at Expression Analysis, Durham, 
NC. The starting total RNA was converted 
and amplified into antisense cRNA, and then 
was converted into ssDNA, which was 
fragmented and labeled with Biotin before 
being hybridized to Affymetrix Mouse Gene 
ST 1.0 microarrays. 

RNA was first converted to sense-
strand cDNA using the Ambion WT 
Expression Kit, in a reverse-transcription 
reaction with primers designed using a 
proprietary oligonucleotide-matching 
algorithm to avoid rRNA binding, thereby 
providing comprehensive coverage of the 
transcriptome while significantly reducing 
coverage of rRNA.  This method also avoids 

the 3’ bias inherent in methods that prime exclusively with oligo-dT-based primers. During 
processing, the concentrations of the intermediate cRNA and sense-strand cDNA samples 
were evaluated using a NanoDrop micro-spectrophotometer.  Up to 10ug of cRNA was used 
for sense-strand cDNA synthesis. Subsequently, 0.7 to 2.75ug of the resulting sense-strand 

cDNA was fragmented and labeled using 
uracil-DNA glycosylase (UDG) and 
apurinic/apyrimidinic endonuclease 1 (APE1).  
APE1 recognizes and fragments the cDNA at 
dUTP residues, which were incorporated 
during the 2nd-cycle. Finally, ssDNA was 
labeled by terminal deoxynucleotidyl 
tranferase (TdT) using the Affymetrix DNA 
Labeling Reagent. 

There was strong correlation between 
yields of cRNA and ssDNA (Fig. 1), 
discounting cRNA levels above 10 µg, since 
only 10 µg were used for ssDNA synthesis. 

The yield of both the cRNA and 
ssDNA intermediates proved to be reliable 
metrics, and good predictors of data quality.  
Since ssDNA was the material that was 
actually hybridized to the microarray, ssDNA 



yield was taken as the benchmark to decide whether or not to hybridize each preparation. Fig.2 
shows the relationship between the ssDNA yield and the final data quality, assessed here by the 
signal’s dynamic range (DR); as will be discussed below, samples with a dynamic range >60 were 
considered to be of very good quality, those with DR between 40 and 60 acceptable. After the 
first batches, samples yielding less than 0.7 µg ssDNA were not used for microarray 
hybridization, unless stemming from rare cell-types (and only a small minority, <50%, eventually 
passed the later QC steps). As might be predicted, these low yields corresponded to rare 
populations which were the most difficult to sort. 

All ImmGen data posted on the web server and deposited in the GEO database were 
generated in 37 independent batches. To monitor batch effects, each batch included a pair of 
common RNA samples, from whole CD4+ and CD19+ splenocytes. These consistently passed 
the ssDNA threshold. 

Hybridization cocktail was prepared using the Hybridization, Wash and Stain kit 
(Affymetrix), applied to Mouse Gene ST 1.0 arrays, and incubated at 45°C for 16 hours. 
Following hybridization, arrays were washed and stained with fluorescent streptavidin using 
standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data 
extraction using the Affymetrix Expression Console. A primary array QC metric at this step 
was Positive versus Negative AUC (area under the curve), which is akin to Signal to Noise – it 
relates to the ability to distinguish true signal from noise. A Pos. vs. Neg. AUC value of > 0.8 
passed array QC metrics at Expression Analysis.  
 
 
 
 



 

II. Data Preprocessing 
Microarrays were scanned in the Affymetrix GeneChip Scanner 3000 7G instrument, and 

the image data processed to generate primary .cel files. These raw .cel files were normalized 
together using Affymetrix Power Tools’ “apt-probeset-summarize” executable. Robust 
Multichip Average (RMA, ref2) was the algorithm used for feature-level normalization, the de 
facto standard for Affymetrix microarrays.  

Each new batch of .cel files returned from Expression Analysis to the Boston core team 
was normalized. Quality control statistics were generated for each sample, and the samples that 
passed (see section III below) were then included in a new normalization run together with all 
the ImmGen samples that had previously passed quality control. Once every three months, all 
ImmGen samples (including samples that had previously failed QC) were normalized together 
and analyzed with quality control metrics for verification. These regular releases were passed 
on to the ImmGen group for biological curation and analysis, and processed for loading onto 
the ImmGen public data browsers 

The Affymetrix Mouse Gene ST1.0 Array has over 750,000 distinct 25-mer probes 
(“features”). Each feature targets a specific exon of the target genes, with good coverage 
throughout, allowing analysis of exon-level transcription. For normal use, the features that 
correspond to a gene are consolidated into one “probesets” (where each probeset 
corresponds to a gene or locus, for 35,518 probesets on the MouseGene ST1.0 array). Each 
probeset summarizes values from 24-40 features, with considerably less noisy data. Most genes 
are represented by a single probeset on the ST1.0 array. A number of features or probesets 
were filtered out prior to normalization: 

 
 1. Remove Un-annotated or Duplicate-Read Probessts   
The CSV annotation file for the ST1.0 arrays was downloaded from the Affymetrix 

website. Probesets whose Gene Symbol assignment was listed as “---” were removed, as these 
correspond to array controls or to intergenic sequences on unknown significance, which often 
exhibit very high inter-replicate noise. We also realized that the Affymetrix processing 
algorithm generates results for “fantom” probesets that are merely multiple replicates of the 
same probeset (e.g. for Snord115 probesets 10564013 and 10564017), with expression values 
identical to the 9th decimal. Including multiple copies of these probesets would distort pre-
processing or later cluster analyses. Thus, only one example of these probesets was retained. 

 
 2. Remove Spuriously High featuress 
While the majority of features yielded signals that correlated with the probeset as a 

whole, a minority of features yielded very high signals, which were uniformly high and 
inconsistent with the expression of the probeset or with other features mapping to the same 
exon. While they might possibly correspond to unknown RNA species, these aberrant features 
were considered irrelevant to the gene as a whole and most likely due to spurious cross-



 

Fig. 3: Example of cross-hybridizing feature. Each row of this heatmap representation depicts the expression 
of a single feature of Foxe1, for all ImmGen populations (in columns). The 6th feature from the top show uniformly 
high expression, without the variation seen in all other features of the gene, and correspondingly did not correlate 
well with the entire gene’s expression. 

 

 

 

  

Fig. 4: Comparison of RNA-seq and microarray-based profiles. RNAs from the same bulk CD4+ T or CD19+ 
B splenocytes were profiled on ST1.0 microarrays as usual, or by deep RNA-seqencing on the Illunina platform 
(Doran G., in preparation). Sequence reads were mapped to individual genes represented on the microarray. 
Blue lines denote the expression thresholds with either technique; Red dots are genes that gave suspiciously high 
signals on the microarray and were removed from the public datagroups. 

 
 

hybridization. They were removed since they might erroneously suggest expression in cell-
types in which a given gene was otherwise silent (Fig. 3). A total of 2372 features (1 per gene at 
most) were removed from consideration prior to RMA normalization, if the following criteria 
were met: feature with high expression (>10.0 after log2 transformation), and with low 
max/min range across all ImmGen data (<=3-fold change after log2 transformation), and with 

low correlation to its probeset in comparison to other features of the same probeset (Pearson 
coefficient < .4 and in bottom 0.2 quantile of features within its probeset). 

 
 
 3. Remove Probesets Discordant with RNA-Seq Datas 
The same CD4 and CD19 controls included in each batch of microarray processing were 

also analyzed by deep RNA sequencing (RNA-seq; ~2x108 Illumina paired end reads; details 
reported elsewhere, Doran et al, in preparation). Comparison of the RNAseq results with the 
microarray data (Fig. 4) showed generally good agreement with the microarray results, as many 



of the genes scoring as expressed by RNA-seq (>1 FPKM - fragments per kilobase of exon per 
million fragments mapped) were also positive by microarray (> standard ImmGen threshold of 
7, after log2 transformation). A fraction (18%, 1599/9031) of the transcripts detected by RNA-
seq scored below threshold on the microarray (log2 expression <7) or were simply absent 
from the microarray (7%, 666/9031). More a problem were transcripts that scored robustly on 
the microarray but were essentially not detected in either of the RNA-seq runs (red dots on 
Fig. 4). These were considered to result from cross-hybridization on the microarray, a 
hypothesis supported by the nature of the transcripts, many of which corresponded to very 
homologous multigene families (e.g. Hist1). These transcripts were removed from the released 
datagroups. 

 
Overall, uninformative or questionable probesets and features have been removed as 

described from the data presented on ImmGen data browsers and smartphone supports, and 
from custom data supplied on request through the ImmGen site. On the other hand, all 
probesets and features are retained in the raw .cel files available from the NCBI GEO database 
(accession # GSE15907). 
 
 



Fig. 5: Dynamic  range of all  ImmGen  
samples, before or after data normalization  

 

Fig. 6: Post-normalization expression histograms  of two representative datasets, one with good dynamic 
range (left, DR=85) or borderline dynamic range (right, DR=55). X-axis: expression value (log2-transformed). 
Note how negative transcripts are clearly demarcated on the left profile, but creep up towards the positive 
range in the lower-quality dataset at right. 

III. Quality Control on ImmGen Microarray data 
 

Several QC steps were implemented during the pre-processing of ImmGen microarray 
data. These were used to remove datasets that were of low intrinsic quality, showed indications 
of likely to resolve discrepancies. Note that these QC standards evolved over the course of the 
project, and continue to be refined, such that the public data may slightly evolve over time. 

 
 
 1. Dynamic Ranges 
After experience, the dynamic range (DR, or the 

ratio between the highest and lowest signal values in a 
single dataset), became the primary metric of quality 
for individual expression profiles. To avoid 
confounding by single outliers, the DR was calculated 
for each dataset by dividing the 95th by the 5th 
percentile of expression values. In practice, the 
dynamic range was calculated after pre-processing, but 
this value was highly correlated with dynamic range in 
the raw data (Fig. 5). 

Low dynamic range denoted low signal intensity 
on the chip, and generally corresponded to samples from lower cell numbers, and thus limited 
amount of ssDNA probe (Fig. 2). The corrections introduced during the initial steps of data 
processing and of normalization resulted, for poor data, in an amplification of the signal 
intensities of un-expressed and negative control probes, as illustrated in Fig. 6 for two samples 
of different dynamic ranges.  Indeed, the position of the main peak (calculated as the “primary 
mode” of a Gaussian decomposition) was another measure of data quality, highly correlated to 
the DR. The expression/expression plots of Fig. 7 show that with two well-amplified samples, 



 

Fig. 7:  Expression/expression plots comparing samples with good (80) or bad (30) DR scores. 

 

Fig. 8:  Distribution of Dynamic Range scores across all ImmGen samples. The plot at left depicts all acquired 
samples, prior to QC, the plot at right depicts the DR scores of retained samples (mean DR score of 86.8). 
Some data with a DR score below 60 were retained in the ImmGen datagroup, but are flagged on the web 
display, in particular because of their higher values for non-expressed genes. 

there was symmetry along the x=y axis, but that comparing samples with very different DR 
values led to a distortion in the comparison (for illustration only, an unacceptably bad sample is 
shown here). 

In practice, all samples with dynamic range below 40 were systematically dropped. 
Samples with DR scores between 40 and 60 were closely inspected for other metrics (in 
particular, examining the match with other replicates for the same cell-type), and were retained 
if they originated from difficult-to-sort populations and/or did not generate high intra-
population variation (see section III.3). The overall distribution of DR metric for all ImmGen 
samples is shown in Fig. 8; the median DR score for retained samples is of 86.8, and only 7.5% 
of retained datasets had a DR<60. 

We assessed whether and how the inclusion of datasets with somewhat different dynamic 
range generated false-positives in the identification of variably expressed genes across the 
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Fig. 9: Influence of the difference in dynamic range in a pairwise comparison between two individual ImmGen 
datasets and the false-positive rate. Pairwise comparisons where one population had a DR of 70-90, and the other 
any DR value along the range, counting the number of transcripts with a FoldChange >3. Black and red dots are 
measures of: false-positives, from comparisons of replicates within individual populations (red dots are for those 
failing QC metrics). Blue dots are a reference from similar pairwise comparisons between populations. 

ImmGen datagroup, an element of key importance in a compendium of this nature. In Fig. 9, we 
plotted the number of genes varying by more than 3-fold in a pairwise comparison; these were 
measured in pairs of replicate datasets from a given cell-type, where one dataset had a dynamic 
range between 70 and 90 and the other varied across the entire range of DR values. As 
expected, very poor quality datasets (DR<40) gave rise to very high numbers of false-positives 
(500 to 10,000), but datasets with DR between 60 and 120 yielded a roughly even proportion 
of false-positives (0.05, 0.95 quantiles 1 and 264 genes, median 14 genes). This range was well 
distinguished from similar inter-population comparisons (0.05, 0.95 quantiles 337 and 3021, 
median 1439). 

 

 
 2.  ImmGen-Wide Correlations 
Another important flag for data QC was a determination of the correlation of new 

datasets to the ImmGen-wide data. Since ImmGen encompasses a wide variety of different 
immune system cells, there was no expectation of uniform results. But a low level of 
correlation with any other dataset was usually a flag for suspicious data (with the exception of 
very different cell types like stromal cells).  



 

Fig. 10: Correlation matrix across all hematopoietic cell-types among  ImmGen samples (bad data included). 
The isolated blue streak denote poor quality samples, although the grouped streak (~samples 50-65) represent 
neutrophils. 

A correlation matrix was drawn for each dataset using the “ImmGenQC” GenePattern 
plug-in, facilitating the identification of outlier datasets (as a “blue streak” in Fig. 10). Samples 
that did not have an ImmGen-wide CC above .97 with any other sample were flagged as 
suspect samples, except for those cell-types that naturally showed little correlation to other 
ImmGen populations, yet strong intra-group correlation (e.g. neutrophils or stromal cells). 
Maximum correlation coefficients for all ImmGen populations are shown in Table 1. 

 

 
 



 

Fig. 11 : Distribution of gene-wise inter-replicate Coefficients of Variation for individual cell-types. The 
example shown at right has a good  CV distribution, with a median between 0.1 and 0.15, while the example at 
left shows a far greater proportion of noisy data, with median CV at 0.21. 

3. Population Coefficient of Variations 
The ImmGen standard was to profile three biological replicates per cell-type examined. 

With these triplicates, a coefficient of variation (CV; computed as the Standard Deviation 
divided by the Mean of triplicate data) was determined for each gene on the microarray and for 
each cett-type. As previously discussed1, the distribution of these gene-wise CVs was a good 
indication of the aggregate data quality for a given population. Any population with a median CV 
above 0.20 (such as the example shown in Fig. 11, left panel) was examined to determine why 
there was so much variation between biological replicates. The usual reason was that one of 
the replicates either had a poor or borderline DR score. This replicate was then removed, 
based on consideration of other data metrics (on the aggregate 14 datasets were removed for 
poor concordance and intrinsically borderline quality). Post-QC, the median intra-population 
CV ranged from .056 to .185 (median .102) across retained ImmGen data. 

In some cases, more than three replicates were profiled for one cell type, all of the 
replicates passed the DR and ImmGen-wide CC metric for individual datasets, and all replicates 
were classified as quality samples. However, in some cases, a few replicates were on the lower 
end of the ImmGen QC assessment, and by dropping them and re-classifying them as poor 
quality samples, the population as a whole had a lower median CV value (dropping below 0.20); 
in such cases, the three best replicates were kept. 

In some cases, triplicates were profiled and initially passed QC standards, but were later 
re-classified as poor quality samples, with evolving standards. Such populations were not 
necessarily re-profiled, and thus the population does not have three quality replicates. In most 
cases there were at least two replicates; in 5 cases, there was only one quality replicate (which 
should be treated with caution). 

 



4. Detection of contaminated populationss 
The quality control metrics described above deal with quality of the expression datasets. 

In addition, the datasets were searched for signs of contamination by analyzing transcripts 
expressed at high levels specifically in particular populations. This search was straightforward 
for some cell-types for which highly specific transcripts could be defined, such as 
immunoglobulins for B cells or hemoglobins for erythrocytes, but not as clearcut for others (in 
particular for contamination with myeloid cells. The transcripts included: 

For T lymphocytes, Lat , Fyb, Thy1, Tcf7, Cd3g; for B lymphocytes, Igh-6, Ms4a, Igj, Cd79b, 
Pax5, Igk; for myeloid cells, Tlr13, Anxa3, IL13ra1, Alox5ap. For red blood cells, Hba-a1, Hba-a2. 

In addition, Hspa8 was used to denote possible stress in the sorted cell preparation. 
Some level of contamination with erythrocyte RNA is unavoidable for some cell 

preparations (understandably, those from blood or bone marrow), even with stringent 
exclusion at the sort stage. The extremely high levels of hemoglobin mRNA in red cells (30% of 
total mRNA) ensures that traces contamination will lead to visible signals for Hb genes. In 
practice, datasets showing traces of Hb signals were not removed from the public data groups, 
but expression of the following genes should be treated with caution: Hba, Hba, Hbb, Gm5226, 
Alas2, Gypa, Epb4.2, Slc4a1. 

ImmGen data were generated from male mice to allow coverage of ChrY-encoded genes, 
with the exception of samples from fetal cells for which both sexes were pooled. Expression of 
Xist was used to identify gender errors (the cell preparation was repeated in such cases). 
 
 
 5. Batch effects.  

Batch effects are an important source of confounders in gene expression profiling. 
ImmGen data were acquired over a 3-year period in 47 different batches (as of June 2011). 
Batch analysis with tools commonly used to extract batch-specific variation (e.g. PCA) was 
difficult to apply in this instance, as different batches were usually composed of different cell-
types over time. Analysis of the constant samples from CD4+ and CD19+ controls included in 
most batches batch served as an indicator of serious defects in processing of individual batches. 
As illustrated in Fig. 12, no such effects were observed. 



 

Fig. 12: Correlation matrix across the constant CD4 control samples included 
with each batch as technical replicates. Three RNA preparations were used over 
the course of the program (batches numbered here 1-10, 17-31, 32-34). 
Although there are subtle differences between the RNA samples themselves, no 
individual  batch particularly stands out. Correlation coefficients between the 
same RNA samples in different batches ranged from .978 to .998, which 
compares favorably to inter-population comparisons where correlation 
coefficient range down to 0.65. 
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