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The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the 
transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression 
profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed 
Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, 
we found differentiation stage–specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 
175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously 
unknown regulators, we emphasize the role of ETV5 in the differentiation of gd T cells. As the transcriptional programs of human and 
mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.

­programs of human and mouse cells are highly conserved4, many 
lessons learned from the mouse model will probably be applicable 
to humans. Two key approaches for the identification of regulatory 
networks5 are physical models based on the association of a transcrip-
tion factor or a cis-regulatory element with a target’s promoter (for 
example, from chromatin immunoprecipitation (ChIP) followed by 
deep sequencing) and observational models with which regulation 
can be inferred from a significant correlation between the abundance 
or activity of a transcription factor (as protein or mRNA) and that of 
its presumed target. In both cases, analysis of the relationship between 
a putative regulator and a module of coregulated targets enhances 
robustness and biological interpretability6,7. Physical data provide 
direct evidence of biochemical interactions but do not necessarily 
indicate function8 and are challenging to collect9, whereas mRNA 
profiles are highly accessible but provide only correlative evidence. As 
physical and observational models are complementary, using both3 
can enhance confidence5–7 and expand the scope of discovery.

Analysis of cells organized in a known lineage, as in hematopoiesis, 
offers unique opportunities that have not been leveraged before. In 
particular, published models3 have not explicitly considered the fact 
that cells that are more closely related (according to the known line-
age tree) probably share many of their regulatory mechanisms and 
that regulatory relationships that exist in one sublineage may not be 
active in another. Incorporating such information may help in the 
identification of true regulators of hematopoiesis.

Here we used those insights to develop a new computational 
method, Ontogenet, and to apply it to the ImmGen compendium 
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The Immunological Genome Project (ImmGen) is a consortium of 
immunologists and computational biologists who aim, through the 
use of shared and rigorously controlled data-generation pipelines, 
to exhaustively chart gene-expression profiles and their underlying 
regulatory networks in the mouse immune system1. In this context, 
we provide the first comprehensive analysis of the ImmGen com-
pendium and use a new computational algorithm to reconstruct a 
modular model of the regulatory program of mouse hematopoiesis. 
Understanding the regulatory mechanisms that underlie the dif-
ferentiation of cells of the immune system has important implica-
tions for the study of development and for understanding the basis 
of human immunological disorders and hematological malignan-
cies. Most studies of hematopoiesis view differentiation as a process 
controlled by relatively few ‘master’ transcription factors that are 
expressed in specific lineages and act to set and reinforce distinct 
cell states2. However, analysis of gene expression in 38 cell types in 
human hematopoiesis3 has suggested a more complex organization 
that involves a larger number of transcription factors that control 
combinations of modules of coexpressed genes and are arranged in 
densely interconnected circuits. However, that human study was 
restricted to human cells that could be obtained in sufficient quanti-
ties from peripheral or cord blood and thus could not access many 
cell populations of the immune system.

The 246 cell types of the mouse immune system in the 816 arrays 
of the ImmGen compendium offer an unprecedented opportunity 
for studying the regulatory organization of hematopoiesis in the 
­context of a rich and diverse lineage tree. Because the transcriptional 
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to build an observational model associating 578 candidate regula-
tors with modules of coexpressed genes. We defined modules at 
two different granularities, with 81 larger coarse-grained modules, 
some of which we further refined into smaller modules with more 
coherent expression; this resulted in 334 fine-grained modules. 
The model identified many of the already known hematopoietic 
regulators, was supported through the use of a complementary 
physical model and proposed dozens of previously unknown can-
didate regulators. Our model provides a rich resource of testable 
hypotheses for experimental studies, and the Ontogenet algo-
rithm can be used to delineate regulation in the context of any ­
cell lineage.

RESULTS
Transcriptional compendium of the mouse immune system
The ImmGen consortium data set1 (April 2012 release) consists ­
of 816 expression profiles from 246 cell types of the mouse immune ­
system (Fig. 1 and Supplementary Table 1). The cell types span ­
all major hematopoietic lineages, including stem and progenitor ­
cells, granulocytes, monocytes, macrophages, dendritic cells (DCs), ­
natural killer (NK) cells, B cells and T cells. The T cells include ­
many types of αβ T cells, regulatory T cells (Treg cells), natural ­
killer T cells (NKT cells) and γδ T cells. The ‘same’ cell type was 
often sampled from several tissues, such as bone marrow, thymus 
and spleen.

Similarities in global profiles trace the cell ontogeny
Correlations in global profiles between samples were largely consist-
ent with the known lineage tree (Fig. 2). In general, the closer two cell 
populations were in the lineage tree, the more similar their expression 
profiles were (Pearson r = –0.71; Supplementary Fig. 1). For myeloid 
cells, profiles were similar overall, with granulocytes being the least 
variable, DCs being the most variable (consistent with DC samples’ 
being obtained from diverse tissues and their known inherent diver-
sity10) and all myeloid cells being weakly similar to stromal cells. 
Conversely, lymphocytes had larger differences between lineages. NK 
cells, although tightly correlated, did show weaker similarity to T cells, 
especially CD8+ T cells and NKT cells. T cells were very heterogene-
ous, which partly reflected the finer sampling for this lineage. Stem 
cells were most similar to early myeloid and lymphoid progenitors 
(S&P group, Fig. 2), followed by pre-B cells and pre-T cells, consist-
ent with a gradual loss of differentiation potential. As a resource for 
studying each lineage, we used one-way analysis of variance to define 
characteristic signatures of over- and underexpressed genes for each 
of the main eleven lineages compared with the expression of those 
genes in all other lineages (Supplementary Table 2).

Coarse- and fine-grained expression modules in hematopoiesis
To characterize the key patterns of gene regulation, we next defined 
modules of coexpressed genes at two granularities (Supplementary 
Fig. 2a,b). We first constructed 81 coarse-grained modules (C1–C81; 
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Figure 1  Mouse cell populations in the ImmGen compendium. Lineage tree of the hematopoietic mouse cell types profiled by the ImmGen Consortium 
(nomenclature and markers for sorting, Supplementary Table 1). Some samples of stem cells, progenitor cells and B cells were obtained from adult and 
fetal liver. Stromal cells (box, bottom right) were also measured as part of ImmGen but are not part of the lineage tree. Color in bar beneath matches 
color of branches in tree above. GN, granulocyte; MF-MO, macrophages-monocyte. Adapted from ref. 4.
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Supplementary Fig. 2c–h and Supplementary Table 3) and then 
further identified for each coarse-grained module a set of nested fine 
modules (Supplementary Fig. 2a), which resulted in 334 fine mod-
ules spanning 7,965 genes (F1–F334; Supplementary Table 4). Coarse 
modules helped us capture the mechanisms that coregulate a larger set 
of genes in one lineage, whereas fine modules may help in the identi-
fication of distinct regulatory mechanisms that control only a smaller 
subset of these genes in the other lineage(s). Many of the modules 
showed enrichment for coherent functional annotations, cis-regulatory ­
elements (Supplementary Table 5) and binding of transcription fac-
tors (Supplementary Table 6 and Supplementary Note 1), including 
binding sites for factors known to act as regulators in the lineage(s) in 
which the module’s genes are expressed (Supplementary Note 2). All 
modules and their associated enrichments can be searched, browsed 
and downloaded at the ImmGen portal (http://www.immgen.org/
ModsRegs/modules.html).

Most coarse-grained modules (48 of 81 modules; 4,478 of 7,965 
genes) showed either lineage-specific induction (Supplementary  
Figs. 2c and 3) or ‘pan-differentiation’ regulation (Supplementary  
Figs. 2de, 4 and 5). In addition, 6 modules were ‘mixed-use’ across 
lineages (Supplementary Figs. 2f and 6), 8 were stromal specific 
(Supplementary Fig. 2g) and 19 had expression patterns that did not fall 
into those categories (Supplementary Figs. 2h and 7). Lineage-specific 
repression was rare (only in C53 (B cells) and C17 (stromal cells)).

Ontogenet: reconstructing lineage-sensitive regulation
We next developed a new algorithm, Ontogenet, to delineate the regu-
latory circuits that drive hematopoietic cell differentiation. Ontogenet 
aims to fulfill the following biological considerations: criterion 1, the 
expression of each module of genes is determined by a combination of 
activating and repressing transcription factors; criterion 2, the activity 
of those factors may change in different cell types (for example, factor 
A may activate a module in one lineage but not in another, even if A is 
expressed in both lineages); criterion 3, the identity and activity of the 
factors that regulate a module are more similar in cells that are close to 
each other in the lineage tree (for example, from the same sublineage) 
than in ‘distant’ cells (for example, from two different sublineages), in 
accordance with the greater similarity in expression profiles of closer 
cell types (Supplementary Fig. 1); and criterion 4, master regulators 
of a lineage (for example, GATA-3 for T cells) are active across the 
sublineages, but the subtypes can also have additional, more specific 
regulators (for example, Foxp3 for Treg cells). The former should be 
captured as shared regulators of a coarse module and its nested fine 
modules, whereas the latter regulate only particular fine modules.

Ontogenet receives as input the gene-expression module, the lineage 
tree and the expression profiles of a predesignated set of ‘candidate 
regulators’ (transcription factors, chromatin regulators and so on). ­
It then associates each module with a combination of regulators 
(criterion 1 above), whereby each regulator is assigned an ‘activity 
weight’ for each cell type that indicates its activity as a regulator for 
that module in that cell (criterion 2 above). The regulator activity is 

at the protein level but is inferred solely from transcript abundance. 
Following the approach in the Lirnet method for regulatory-network 
reconstruction6, the activity-weighted expression of the regulators 
is combined in a linear model to generate a prediction of a module’s 
gene expression in each cell type (Fig. 3). In this model, the expres-
sion of the module’s genes in a given cell type is approximated by the 
linear sum of the regulators’ expression in that cell type multiplied by 
each regulator’s activity weight in that cell type. As a result, the model 
makes predictions such as “in pre B cells, Module 1 is activated by 
transcription factors A and B and is repressed by factor C, whereas 
in B cells, factors A and C are no longer active (even if the factors are 
expressed), and Module 1 is activated by B and D.” Our model assumes 
that all genes in the same module are regulated in the same way. This 
is essential for statistical robustness, although it comes at the cost of 
missing some gene-specific expression patterns. The fine modules let 
us examine subtler expression patterns shared by fewer genes but are 
more susceptible to noise.

Although Ontogenet reconstructs a potentially different regulatory 
program for each cell type, as reflected by the cell-specific activity 
weights of each regulator, it is geared toward maintaining the same 
activity across consecutive stages in differentiation (criterion 3). This 
is achieved by penalizing changes in the activity weights of the regula-
tory program between a cell type and its progenitor. The fine-grained 
modules derived from a coarse-grained module ‘inherit’ the same 
regulators and activity weights that were inferred for their coarse-
grained module (while possibly gaining additional regulators; crite-
rion 4). Collectively, we use an optimization approach that constructs 
an ensemble of regulatory programs that try to achieve the following 
goals: each regulatory program explains as much of the gene-expression ­
variance in the module as possible; the regulatory programs remain as 
simple as possible; regulatory programs are consistent across related 
cell types in the ontogeny; and fine modules have regulators similar 
to those of the coarse modules to which they belong.

Notably, the approach used before to identify combinations of regu-
lators (for example, linear regression regularized with the Elastic Net 
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penalty6,11) assumed that regulatory activ-
ity (and hence activity weight) is the same 
across all cell types. Thus, if a regulator was 
expressed similarly in two different cells, it 
was deemed to be active to the same extent. 
This violates the known context specificity of 
regulation in complex lineages. Conversely, 
allowing the algorithm to construct a sepa-
rate regulatory program for each cell type 
independently is impractical and also ignores 
the expected similarity between related cell types in the lineage in 
terms of gene regulation. Ontogenet solves this problem by leveraging 
the lineage tree when inferring the regulatory connections and their 
activity, such that the module’s genes are more likely to be regulated 
in a similar way in related cell types.

Ontogenet regulatory model for mouse hematopoiesis
We applied Ontogenet to the 81 coarse-grained modules and 334 fine 
modules, a lineage tree consisting of 195 cell types and 580 candidate 
regulators. The Ontogenet model identified 1,417 regulatory relations 
(1,091 activating, 317 repressing and 9 mixed) between 81 coarse-
grained modules and 480 unique regulators (Fig. 4, Supplementary 
Fig. 8 and Supplementary Table 5). On average, there were 17 regula-
tors per coarse-grained module, and three coarse-grained modules per 
regulator. As determined by cross-validation, Ontogenet constructs 
regulatory programs that are strictly better at predicting new and 
previously unknown expression data than those obtained by Elastic 
Net6, a method that does not use the tree and has fixed activity weights 
(Supplementary Fig. 9 and Supplementary Note 3).

In most cases (59%), a regulator’s activity weights varied in differ-
ent cell types (‘frequently changing’), reflective of context-specific 
regulation (Supplementary Fig. 10). When we pruned regulatory 
interactions whose maximal effect (defined as the product of activ-
ity weight and expression) was low, we obtained a sparser network, 
in which ‘pan-differentiation’ and lineage-specific modules were 
controlled mostly by distinct regulators (Fig. 5), whereas mixed-use 
modules shared regulators with modules in the other classes. The 
regulatory model associating 334 fine modules and 554 regulators in 
6,151 interactions had qualitatively similar patterns, except for hav-
ing more regulators with mixed activity (that is, a regulator’s activity 
weights frequently changed in some modules and remained constant 
in others), probably reflective of both the greater number of interac-
tions and the finer regulatory program (Supplementary Fig. 10 and 
Supplementary Table 7). This rich regulatory model for differentia-
tion of the mouse immune system identified many known regulatory 
interactions and suggested new regulatory interactions in specific 
immunological contexts.

Ontogenet prediction of known regulatory interactions
Many of the regulatory interactions identified by Ontogenet were 
already known, which supported the accuracy of our model. For 
example, among individual regulators, PU.1 (encoded by Sfpi1) was 
selected as a regulator of the myeloid and B cell module C25 (and 13 
of its 15 fine modules); C/EBPα (encoded by Cebpa) regulates the 
myeloid modules C24, C30 and C74, the macrophage module C29, 
and many myeloid fine modules; C/EBPβ (encoded by Cebpb) regu-
lates the myeloid-specific modules C25 and C30 and many myeloid 
fine modules; MafB (encoded by Mafb) regulates the macrophage-
specific modules C29, F128 and F131; STAT1 regulates the interferon-
response module C52; T-bet (encoded by Tbx21) regulates the NK 
cell module C19 and NKT cell module F288; and CIITA (encoded by 
Ciita) regulates the antigen-presenting cell module F136.

Furthermore, the combination of regulators associated with a ­
single module was also consistent with known regulatory relations. ­
For example, the B cell module C33 is regulated by the known ­
B cell regulators Pax5, EBF1, POU2AF1 and Spi-B (Fig. 4); the ­
T cell module C18 (Supplementary Fig. 8) is regulated by the ­
known T cell regulators Bcl-11B, GATA-3, Lef1, TOX and TCF7; ­
the γδ T cell module C56 is regulated by the known γδ T cell regula-
tors PLZF (ZBTB16), Sox13 and Id3, all also involved in NKT cell 
development and function; the NKT module F188 is regulated by ­
GATA-3, T-bet and PLZF; and fine modules F150 and F152, in which 
the expression of their member genes by CD8+ DCs is higher than 
that of CD4+ DCs, are regulated by IRF8 (but not IRF4), consistent 
with the known role of subset-selective expression IRF4 and IRF8 in 
DC commitment12.

Ontogenet’s predictions were also supported by their significant 
overlap with those based on enrichment of cis-regulatory motifs and 
ChIP-based binding profiles in the modules (Supplementary Tables 5 
and 6), which supported the idea of direct physical interaction between 
a regulator and the genes in the module with which it was associated 
by Ontogenet (Supplementary Table 8). For example, 27 of the asso-
ciations between a regulator and a coarse module were supported by 
enrichment for cis-regulatory motifs (P = 2.6 × 10−5 (hypergeometric 
test for two groups) and P < 1 × 10−5 (permutation test)), such as 

ba

Target module mean

Global activator
Expression

Activity

Context-specific regulator

Global repressor

Target module expression

Expression

Activity

Expression

Activity

Samples

−2 0 2

Expression (fold)

Repression None Activation

Activity

= Regulator expression
Regulator activity

Irf5 expression

Gata3 expression

Tox expression

Trim14 expression

IRF5 activity

GATA-3 activity

TOX activity

TRIM14 activity

+

+

+

Mean module expression

= ×

×

×

×

×

Σ

Figure 3  Overview of Ontogenet. (a) Use of 
the regulator expression profile (blue-red; key 
below) and activity profile (orange-purple; key 
below) to demonstrate how a type of regulator 
(bottom) can ‘explain’ the expression of a 
module (top): a regulator may have a uniformly 
positive activity weight across the lineage 
(constitutive activator; top), a uniformly 
negative activity weight (constitutive repressor; 
middle) or variable activity weights (context-
specific regulator; bottom). (b) Mean expression 
of a module (top) calculated as a linear 
combination of regulator expression (blue-red; 
left) and activity (orange-purple; right).



©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature immunology  aDVANCE ONLINE PUBLICATION	 �

r e s o u r c e

the GATA-2 motif in the hematopoietic stem 
cell (HSC) module C40, and the PU.1 (SFPI1) ­
motif in myeloid cell module C25. The ­
ChIP profiles supported the prediction of ­
21 regulator–coarse module associations ­
(P = 2.2 × 10−5 (hypergeometric test for two 
groups) and P < 1 × 10−5 (permutation test)), 
such as the binding of C/EBPα and C/EBPβ 
in the myeloid cell module C24 and the bind-
ing of EBF1 in the B cell module C33.

Although those overlaps were statistically 
significant, they nevertheless also indicated 
that the predictions of most regulatory inter-
actions were not supported by enrichment for known cis-regulatory 
motifs or available transcription factor–binding data, and vice versa. 
There are three reasons for this. First, assigning scores for binding 
sites and their enrichment is a process that is highly prone to false-
negative results; this is particularly likely to occur for much smaller 
fine modules. Second, the majority of regulators chosen by Ontogenet 
do not have a characterized binding motif (60% of regulators; 334 
of 554) or ChIP binding data in any cell type (90% of regulators; 
497 of 554). Such regulators can be nominated only by an expres-
sion-based method, such as Ontogenet, and should not be considered 
false-positive results of our method. Third, in many cases in which we 
do find enrichment for a cis-regulatory element or binding profile for ­
(for example) transcription factor A in module B (300 of 551 cis-­
regulatory interactions (54%); 52 of 90 ChIP-based interactions 
(57%)), the transcription factor (A) and its target module (B) show 
little or no correlation in expression (absolute Pearson r < 0.5). In 
some cases, this is due to a factor that is not itself transcriptionally 
regulated (a real ‘false-negative’ result of Ontogenet), but in many 
other cases the factor probably controls these targets in another cell 
type not measured in our study (and hence is not in fact a false-­
negative result of Ontogenet).

A few known regulators of differentiation of the immune system13 
were not identified by the model for various reasons. Tal-1 and BMI1 
did not meet the initial filtering criteria, as they were expressed only 
in HSCs, and hence were not provided as input. GFI1 was not assigned 

as a regulator in stem and progenitor cells or granulocytes because its 
expression was highest in pre-T cells and was only sparse and inter-
mediate in stem and progenitor cells and granulocytes. E2A (encoded 
by Tcf3) was not identified as a T cell regulator, perhaps because it 
was not specifically expressed in T cells and had low expression in 
general, possibly because of a bad probe set. XBP1 was not identified 
as a B cell regulator because it had relatively low expression in B cells 
in our arrays and had higher expression in myeloid cells.

The reidentification of known regulators lends support to the many 
previously unknown regulatory interactions in the model. Of the 475 
regulators that Ontogenet associated with lineage-specific modules 
or ‘pan-differentiation’ modules, at least 175 (37%) were completely 
unknown in this context. Among those, for example, KLF12 was pre-
dicted to be a regulator of the NK cell module C19 but was not associ-
ated before with the regulation of NK cells. GATA-6 was predicted to be 
a regulator of the macrophage-specific modules C31, C50 and C58 but 
was not associated before with macrophages. That is in agreement with 
the much lower number of granulocyte-macrophage colonies gener-
ated by embryoid bodies of GATA-6-deficient mice14. Finally, ETV5 
was predicted by the model to be a regulator of the γδ T cell modules 
F287 and F289, a previously unknown role discussed below.

Context-specific regulation underlies mixed-use modules
Context-specific regulation, in which the same set of genes is regu-
lated by one set of regulators in the context of one lineage and by 
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another set of regulators in the context of another lineage, has been 
reported in selected cases, such as the regulation of Rag2 by GATA-3 
in T cells and by Pax5 in B cells15. The ability of Ontogenet to identify 
different regulatory programs for the same module in different parts 
of the lineage tree can help delineate the regulatory mechanisms that 
underlie ‘mixed-use’ modules expressed in more than one lineage. For 
example, module C70 is induced both in Treg cells and some myeloid 
populations. Each activation event is associated with different regu-
lators in our model: Foxp3 in CD4+ T cells (itself a member of the 
module, although not expressed in the DC subsets), and PIAS3, HSF2 
and INSM1 in DCs. In another example, the fine-grained module 
F300 is independently induced in both mature B cells and T cells. 
Although some of its regulators are themselves ‘mixed-use’ in both 
lineages, others are B cell specific (ZFP318, RFX5 and CIITA) or T cell ­
specific (EGR2).

Regulatory recruitment and ‘rewiring’ during differentiation
Most regulatory relations identified by Ontogenet were dynamic, as 
reflected by the change in their associated activity weights during differ-
entiation. This change provided a ‘bird’s-eye’ view of the ‘recruitment’ ­

and ‘disposal’ of regulators (Fig. 6a). To characterize this, for each 
cell type, we identified all the regulatory interactions whose activ-
ity weight changed (increased or decreased) between that cell type 
and its immediate progenitor (Supplementary Table 9), as well as 
the unique regulators and modules involved in those interactions. 
In this way, we identified modules and regulators that were recruited 
and strengthened (activity weight greater than that of its progenitor) 
or were disposed of and weakened (activity weight lower than that of 
its progenitor) at each differentiation step. Notably, recruitment (or 
disposal) of regulators does not necessarily mean that the regulators’ 
expression changes but that the model suggests that their regulatory 
activity has changed for this set of targets. For example, during the 
differentiation of CD8+ T cells from common lymphoid progenitors, 
61 regulatory interactions were recruited, involving 34 modules and 
49 regulators, only 15 of which have been associated before with T cell 
differentiation. In particular, for the differentiation step from double-
negative (CD4−CD8−) stage 4 T cell to immature single-positive (CD4+ 
or CD8+) T cell, Ontogenet independently identified the previously 
reported involvement of MXD4, Batf and NFIL3 and newly identi-
fied the involvement of RCBTB1, PIAS3 and ITGB3BP (Fig. 6b,c). ­
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In another example, during the differentiation step that leads to NK 
cells, the NK cell module C19 was assigned the known NK cell regula-
tors Eomes and T-bet as activators. Both Eomes and T-bet were also 
recruited as repressors at this differentiation step in other modules. 
The differentiation step that leads to Treg cells recruited the Treg cell 
module C70 and its known regulators Foxp3 and CREM (which has 
been proposed as a Treg cell regulator16). Notably, because HSCs have 
no parent in our model, regulators active in HSCs will be noted only 
when they are no longer used at later points (for example, HOXA7 
and HOXA9 were no longer used as activators at the multilymphoid 

­progenitor stage). The first differentiation step with activator recruit-
ment is the step that leads to multilymphoid progenitors, at which 
MEIS1 is recruited to module C42. MEIS1 is later no longer used 
by C42 in T cells, in agreement with the reported methylation and 
silencing of the gene encoding MEIS1 during differentiation toward 
T cells17.

Ranking of lineage activators and repressors
The activity weights assigned for each regulator at each differentiation 
point allowed us to identify and rank regulators as lineage activators ­
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and repressors on the basis of the entire model (Fig. 6d and 
Supplementary Table 10). In this way we correctly captured many 
known regulators of each lineage among the top-ranked activators. For 
example, our model associated c-Myc, N-Myc, GATA-2 and MEIS1 
with stem and progenitor cells; Bcl-11B, TCF7 and GATA-3 with αβ 
T cells; POU2AF1, Pax5, EBF1 and Spi-B with B cells; Eomes, T-bet 
and Smad3 with NK cells; and GATA-3 and PLZF with NKT cells. In 
addition, the model made many predictions of lineage regulators not 
previously associated with those lineages, such as the following: in 
stem and progenitor cells, HLF; in granulocytes, DACH1 (reported to 
regulate cell-cycle progression in myeloid cells18), Bach1 and NFE2; 
in macrophages, CREG1; in DCs, ATF6, ETV3, SKIL, NR4A2 and 
NR4A3 (shown to be induced in viral infected DCs19,20); in mono-
cytes, POU2F2 (Oct2; reported to be upregulated during macrophage 
differentiation21) and KLF13 (a regulator of B cells and T cells22 with 
higher expression in monocytes); in B cells, ZFP318; and in NK cells, 
ELF4 (Gm9907; shown to control the proliferation and homing of 
CD8+ T cells23). Notably, although this ‘pan-model’ analysis is useful, 
it can deemphasize the contribution of important regulators captured 
by the model in a more nuanced way—for example, as acting only dur-
ing a limited window of differentiation but not present in the mature 
stage. Those are captured by the recruitment and disposal analysis 
presented above (Fig. 6).

Finally, by counting the changes in activity weight that occur (across 
all regulators and modules) at each differentiation step (‘edge’), we can 
identify those differentiation points at which regulation is ‘rewired’ 
most substantially (Supplementary Fig. 11). For example, 19 regula-
tors were recruited to coarse modules (that is, their activity weight 
increased from 0) at the early thymocyte progenitor stage, and 28 
regulators were recruited to coarse modules at the γδ T cell stage, 
including the known T cell regulator GATA-3 and the known γδ T cell 
regulators Id3 and Sox13 (Supplementary Fig. 11a). At the common 
lymphoid progenitor stage, four regulators were disposed of (that is, 
their activity weight diminished to 0) by coarse modules, including 
the HSC regulators HOXA7, HOXA9 and HOXB3. Eighteen regula-
tors were disposed of at the double-negative-2 T cell precursor stage, 
including GATA-1, c-Myc and N-Myc (Supplementary Fig. 11b). 

Overall, ‘rewiring’ was more prominent at higher levels in the lineage 
than at lower (more-differentiated) levels, although this may have 
been partly due to the diminished power to detect changes in cell types 
with no other cells differentiating from them (terminally differenti-
ated; also called ‘leaves in the tree’). The individual differentiation 
steps with the largest number of activity weight changes were those 
in small-intestine DCs, thymus γδ T cells, liver and lung DCs and ­
double-negative-2 T cell precursor stage, which suggests substantial 
regulatory ‘rewiring’ in these cells, possibly due to tissue-specific 
effects. The regulatory model for fine modules identified a larger 
number of regulatory changes (a change in activity weight for 82% of 
the differentiation steps, compared with 65% for the coarse-grained 
module model), in particular in differentiation steps leading to ‘leaves’ 
(terminally differentiated cells; 67% versus 48%). Thus, the fine-
grained modules help to identify more cell type–specific regulation.

ETV5 regulates gd T cell differentiation
To test one of the model’s predictions in vivo, we centered on regu-
latory activators of lineage-specific modules with no known func-
tion in that lineage. A practical criterion was that the gene could be 
manipulated in vivo in a cell type–restricted manner. We focused on 
the Ets family member ETV5 and its predicted role as a regulator 
of the differentiation of γδ T cells in modules F287 and F289, as its 
expression is highly restricted to the γδ T cell lineage. Although the 
model assigned several regulators to these modules, only two, Sox13 
and ETV5, are specific to the γδ T cell lineage. Both are expressed 
in distinct thymic precursors, which raised the possibility that they 
are among the earliest determinants of the lineage. Sox13 is a known 
regulator of γδ T cells, but ETV5 has not been linked to γδ T cell 
development thus far.

To assess the regulatory role of ETV5 in γδ T cells, we analyzed γδ 
T cell development and function in mice lacking ETV5 specifically 
in T cells (CD2p-CreTg+Etv5fl/fl mice). As thymocytes that express 
the γδ T cell antigen receptor transit from immature cells with high 
expression of the cell surface marker CD24 (CD24hi) to mature 
CD24lo cells, they acquire effector functions24. ETV5 has its high-
est expression in γδ thymocytes expressing γ-chain variable region 2 
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(Vγ2) of the T cell antigen receptor, which constitute nearly half of all 
γδ T cells in postnatal mice. Most Vγ2+ cells differentiate into inter-
leukin 17 (IL-17)-producing γδ effector cells in the thymus24. Thus, 
one prediction of the model was that the intrathymic development of ­
IL-17-producing γδ effector cells would be particularly impaired in the 
absence of ETV5. In mice with conditional T cell–specific deficiency 
in ETV5, the overall number of γδ T cells generated was similar to that 
of control mice (their CD2p-CreTg+Etv5+/+ littermates): in 7-day-old 
neonates, total number of thymocytes in mice with T cell–specific 
ETV5 deficiency was ~50% of normal, but the frequency of thymo-
cytes that expressed the γδ T cell antigen receptor was about twofold 
higher, which resulted in an abundance of γδ T cells in the thymus and 
spleen similar to that in control mice (Fig. 7a). However, there was 
specific loss of mature Vγ2+ thymocytes in mice with T cell–specific 
ETV5 deficiency (Fig. 7b, top). This may have been due to inefficient 
activation, as indicated by the lower expression of CD44 (the nominal 
marker of lymphocyte activation) on Vγ2+ thymocytes from mice with 
T cell–specific ETV5 deficiency and the correspondingly higher expres-
sion of CD62L (a marker of the naive state) on those cells (Fig. 7b, ­
bottom). For γδ thymocytes that expressed other Vγ chains, the pro-
portion of mature cells or activated cells in mice with T cell–specific ­
ETV5 deficiency was not different from that of controls. Critically, 
the residual mature thymocytes in mice with T cell–specific ETV5 
deficiency were impaired in the generation of IL-17-producing γδ 
effector cells (Fig. 7c). Mature Vγ2+ thymocytes from ETV5-deficient 
mice had lower expression of the transcription factor RORγt (which 
induces Il17 transcription), and both thymic and peripheral γδ T cells 
were impaired in the generation of CCR6+CD27− IL-17-producing γδ 
effector cells (Fig. 7c). These results supported the prediction of our ­
model and demonstrated that ETV5 was essential for proper intra
thymic maturation of the IL-17-producing γδ effector cell subset.

Studying the Ontogenet model on the ImmGen portal
To facilitate exploration and testing of other predictions of our 
model, we provide the full set of modules and regulatory model as 
part of the ImmGen portal, with relevant tools for searching, brows-
ing and visually inspecting the results. Specifically, the ‘Modules and 
Regulators’ data browser of the ImmGen portal (http://www.immgen.
org/ModsRegs/modules.html) is the gateway to the Ontogenet regu-
latory model of the ImmGen. It allows the user to browse coarse-
grained or fine-grained modules by their number, their pattern of 
expression, a gene they contain, a regulator predicted to regulate 
them or the cell type in which they are induced. For each module, we 
present the expression of its genes and predicted regulators (each as a 
heat map), the activity weights of each regulator in each cell, and the 
module’s mean expression projected on the lineage tree (as in Fig. 4a). 
The module page also links to a list of the genes in the module, the 
regulators that are members of the module, the regulators predicted 
to regulate the module, the regulators suggested by enrichment of 
cis motifs and binding events of the module genes, and functional 
enrichments of the module. Finally, we provide links for downloading 
a table with the assignment of all genes to coarse and fine modules, the 
regulatory program of all modules, and the Ontogenet code.

DISCUSSION
The ImmGen data set provides the most detailed and comprehensive 
view of the transcriptional activity of any mammalian immune system 
and (arguably) of any developmental cell–differentiation process. We 
have used those data to analyze the regulatory circuits underlying 
such processes, from global profiles to modules to the transcription 
factors that control them. The unique features of Ontogenet have 

allowed us to identify regulatory programs active at specific differen-
tiation stages and to follow them as they ‘unfold’ and ‘rewire’.

Our analysis has automatically reidentified many of the known 
regulators and their correct function, has suggested additional roles 
for at least 175 more regulators not associated before with hemato
poiesis and has identified points in the lineage at which regulators 
are recruited to control a specific gene program or lose their regula-
tory function. Our ability to automatically reidentify many known 
regulators at the appropriate developmental stage and the significant 
correspondence among the predicted regulators, known functions, 
enrichment for cis-motifs and enrichment by ChIP followed by deep 
sequencing supports the probably high quality of our new predictions. 
Among those, we experimentally tested and confirmed a previously 
unknown role for ETV5 in the differentiation of the γδ T effector cell 
subset. Additional studies should determine whether ETV5 regulates 
the differentiation of IL-17-producing γδ effector cells by selectively 
controlling the expression of genes in γδ lineage–specific modules.

Ontogenet’s rich model allows us to predict the specific biologi-
cal context at which regulation occurs, to generalize broad roles for 
regulators and to identify global principles of the regulatory program. 
The ability to identify regulators that act only during specific dif-
ferentiation windows helps to detect ‘early’ programming transcrip-
tion factors whose expression is shut off when cells transit to the 
mature stage. However, integrating across the model’s predictions in 
an entire lineage helps to identify transcription factors important for 
the maintenance of lineage identity or function, such as those that 
directly regulate the expression of effector molecules. Finally, general-
izing across multiple regulators, we can identify those differentiation 
steps at which regulatory control ‘rewires’ most substantially and the 
regulators that control such ‘rewiring’.

As with all expression-based methods used to predict regulation, 
Ontogenet cannot directly distinguish causal directionality. To avoid 
arbitrary resolution of this ambiguity, Ontogenet allows several 
regulators with similar expression profiles to be assigned together 
as regulators of a module. The dense interconnected circuits and 
extensive autoregulation in other mammalian circuits that controls 
cell states3,25 suggest that such regulatory interactions are probably 
functional, although some may be ‘false-positive’ results. Conversely, 
the activation of other functional regulators may not be reflected by 
their expression, and some may have been filtered by our stringent 
criteria (for example, Tal1, which encodes a known HSC regulator). 
Those may be captured by our complementary analysis of enrich-
ment of modules in cis-regulatory motifs and binding of regulators. 
Another challenge is posed by genes with unique expression profiles 
that are assigned to modules with similar but distinct expression pro-
files (such as Rag1 and Rag2 in module C5). The inferred regulatory 
program is unlikely to hold true for those genes.

A similar study of human hematopoiesis3 has suggested substan-
tial mixed use of modules by lineages, whereas the mouse compen-
dium suggests that most modules are lineage specific. As has been 
shown before, global profiles, lineage-specific signatures and gene-­
coexpression patterns are otherwise broadly conserved between 
humans and mice4. One possible reason for the diminished ‘mixed 
use’ in the mouse program is that whereas the mouse data set con-
tains many more cell types, it does not include erythrocytes, mega
karyocyte, basophils and eosinophils, the cells for which many of the 
‘mixed-use’ patterns have been observed in humans3. Notably, many 
regulators were shared across lineages. In particular, some regulators 
were active in only one lineage in some modules but were shared 
by lineages in other modules. For example, ATF6 was an activator 
in all lineages in the myeloid modules C25, C45 and C49 but was a ­

http://www.immgen.org/ModsRegs/modules.html
http://www.immgen.org/ModsRegs/modules.html
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T cell–specific repressor in the T cell precursor module C57 and was 
a T cell–specific activator in the B cell module C71.

Ontogenet is applicable to other differentiation data sets, including 
data obtained with fetal samples or for cancer studies, when other pre-
dictors are used as candidate regulators (for example, genetic variants 
as in Lirnet6), when cells are measured in both the resting state and 
stimulated state, or for protein-expression data (for example, single-
cell, high-dimensional phosphoproteomic mass cytometry data26). In 
each case, the ability to share regulatory programs by related cell types 
or conditions can both enhance the power and help with biological 
interpretation. Notably, Ontogenet now depends on a preconstructed 
ontogeny. Although much is known about the hematopoietic lineage, 
some parts remain unstructured (for example, all DCs in the myeloid 
lineage) and some progenitors are not known (for example, those 
of γδ T cells or other innate-like lymphocytes). This reflects in part 
inherent lineage flexibility, whereby several cell types can differenti-
ate into the same cell type, but reflects in part simply the present lack 
of knowledge of the particular progenitor of a given cell type. New 
methods would be needed to construct an ontogeny automatically or 
to revise an existing one. In other cases, Ontogenet’s output can be 
used to refine the topology of the ontogeny by identifying ‘edges’ that 
do not correspond to any changes in regulatory programs and can be 
removed without disconnecting the lineage. The ImmGen compen-
dium, coarse- and fine-grained modules and identified regulators 
and regulatory relations are all available for interactive searching and 
browsing and for downloading at the ImmGen portal and will provide 
an invaluable resource for future studies of the role of gene regulation 
in cell differentiation and immunological disease.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession code. GEO: microarray data, GSE15907.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Data set. Expression of mouse genes was measured on Affymetrix Mogen1 
arrays (Affymetrix annotation version 31). Sorting strategies for the ImmGen 
populations are available on the ImmGen website (http://www.immgen.org/
Protocols/ImmGen Cell prep and sorting SOP.pdf).

As the data set of the ImmGen gradually grew from 2010 to 2012, cluster-
ing, regulatory program reconstruction and final presentation were done on 
three different ImmGen releases (September 2010, March 2011 and April 
2012) with attempts to maximize backward compatibility as much as possible. 
The clusters and the regulatory program are from the September 2010 and 
March 2011 releases, chosen to ensure consistency with the other ImmGen 
Report papers that refer to them. Clustering was done on the ImmGen release 
of September 2010, with 744 samples, 647 of which remained in the April 
2012 release. Ontogenet was applied to the ImmGen release of March 2011, 
only to the data of the 676 samples (195 hematopoietic cell types) that were 
connected to the hematopoietic tree. Thus, we maintained membership in 
clusters from the earlier analysis but used only some of the samples to learn 
the regulatory program. The heat maps presented here include 755 samples 
(244 cell types), excluding control samples. For simplicity, only 720 sam-
ples are presented on the full tree (210 cell types). Supplementary Table 1 
lists all the samples in the last ImmGen release (April 2012) and states for 
each sample if it was used in generating the modules, regulatory program 
reconstruction, the presented heat maps and tree. The ImmGen website is 
continuously updated.

Data preprocessing. Expression data were normalized as part of the ImmGen 
pipeline by the robust multiarray average method. Data were log2 trans-
formed. For genes with more than one probe set on the array, only the probe 
set with the highest mean expression was retained. Of those, only probe sets 
with a s.d. value above 0.5 for the entire data set were used for the clustering, 
which resulted with 7,965 unique genes with a difference in expression in the 
September 2011 release and 8,431 in the April 2012 release.

Lineage-specific signatures. We calculated signatures for 11 lineages: granu-
locyte, macrophage, monocyte, DC, B cell, NK cell, CD4+ T cell, CD8+ T cell, 
NKT cell, γδ T cell and stem and progenitor cell. Assignment of samples into 
lineages is in Supplementary Table 2. One-way analysis of variance was done 
for each of the 6,997 genes with an expression value above log2(120) in at least 
one lineage, followed by post-hoc analysis (functions anova1 and multcompare 
in MATLAB software). For each of the 11 lineages, a gene was considered 
induced if it had significantly higher expression in that lineage than in all other 
lineages. A gene was considered repressed if it had significantly lower expres-
sion in that lineage than in all other lineages. A false-discovery rate (FDR) of 
10% was applied to the analysis of variance P values of all genes.

Definition of modules. Modules were defined by clustering. For coarse-
grained modules, clustering was done by superparamagnetic clustering 
(SPC)27, a principled approach for choosing stable clusters from a hierarchi-
cal setting. SPC was used because it does not require a predefined number ­
of clusters but instead identifies the number inherently supported by the 
data. The clusters defined by SPC are stable across a range of parameters, 
although they can have variable degrees of compactness. SPC was run ­
with default parameters, which resulted in 80 stable clusters (coarse-grained 
modules C1–C80); the remaining unclustered genes were grouped into a ­
separate cluster (C81).

Each coarse-grained module was further partitioned into fine-grained 
modules by affinity propagation clustering28, with correlation as the affinity 
measure. The ‘self-responsibility’ parameter (which indicates the propensity 
of the algorithm to form a new cluster) was set at 0.01. Affinity propagation 
was used because SPC and hierarchical clustering did not further break the 
coarse modules. Affinity propagation could not be used for clustering of all 
genes, because it must work with a ‘sparsified’ affinity matrix.

Clustering resulted in 334 fine-grained modules (F1–F334). On average, 
3.9 fine-grained modules were nested in a single coarse-grained module. 
The minimum number of fine modules nested in a coarse-grained module 
was 1 (23 coarse-grained modules) and the maximum was 11 (7 coarse-­
grained modules).

Choice of candidate regulators. Candidate regulators were curated from 
the following sources: mouse orthologs of all the genes encoding molecules 
used as candidate regulators in a published study of human hematopoiesis3; 
genes annotated with the gene-ontology term ‘transcription factor activity’ in 
mouse, human or rat; genes for which there is a known DNA-binding motif 
in TRANSFAC matrix database (version 8.3)29, the JASPAR database (version 
2008)30 and experimentally determined position weight matrices (PWMs)31,32; 
and genes with published data obtained by ChIP followed by deep sequenc-
ing or ChIP followed by microarray (Supplementary Table 11). Regulators 
that were not measured on the array or whose expression did not change 
sufficiently (s.d. < 0.5 across the entire data set) to be included in the cluster-
ing were removed, unless they were highly correlated (> 0.85) with another 
regulator that passed the cutoff. This resulted in 578 candidate regulators 
(Supplementary Table 12).

Hematopoietic tree building. The hematopoietic tree (Fig. 1) was built by 
the members of the ImmGen Consortium. Each group created its own sub-
lineage tree, and the sublineage trees were connected on the basis of the best 
knowledge available at present, although some edges are hypothetical (dashed 
lines, Fig. 1). There are two roots to the tree: long-term stem cells from adult 
bone marrow, and long-term stem cells from fetal liver. Each population is 
a node in the tree (square, Fig. 1). Edges indicate a differentiation step, an 
activation step, time (as in the activated T cells) or a general assumption of 
similarity in regulatory program (Supplementary Table 13). Some intermedi-
ate inferred nodes were added to group cell populations that were assumed 
to have a common progenitor or common regulatory program but for which 
this hypothetical population was not measured (for example, granulocytes and 
macrophages). For the populations that connected to more than one parent 
population, one of the edges was manually pruned, either the less likely one 
or arbitrarily (Supplementary Table 13).

Module regulatory program. Ontogenet takes the following as input: gene-
expression profiles across many different cell types; a partitioning of the genes 
into modules (the coarse-grained and fine-grained clusters described above); 
a predefined set of candidate regulators; and an ontogeny tree relating the cell 
types. It then constructs a regulatory program for each module consisting of a 
linear combination of regulators with possibly distinct activity weights for each 
regulator in each cell type. A module’s regulatory program is the linear sum of 
the regulators’ expression multiplied by each regulator’s activity weight, which 
approximates the expression pattern of the module. Each regulatory program 
aims to explain as much of the gene-expression variance in the module as 
possible while remaining as simple as possible and being consistent across 
related cell types in the ontogeny. In a regular linear model, the activity weights 
are constant across all conditions. Here, we allow a change of activity weights 
between cell types (Fig. 3).

Notably, all regulators are considered as potential regulators for each mod-
ule. That includes regulators that are members of the module. Thus, a module 
can be assigned regulators that are its members and regulators that are not its 
members, but regulators that are members of the module will not necessarily 
be assigned to it.

More formally, we model the expression of a gene in a module as a (noisy) 
linear combination of the expression of the regulators. We denote the activity 
of a regulator r in a cell type t as ar,t. We model the expression of a gene i, a 
member of module m, in cell type t as

X w ai t m r t r t m tr, , , , ,= +∑ e

where each εm,t is a Gaussian random variable with 0 mean and variance sm t,
2  

specific to a combination of a module m and a cell type t. Hence the regula-
tory program learned by Ontogenet is represented in terms of wm,r,t activity 
weights specific to a combination of module, regulator and cell type. Because of 
parameter tying enforced by the model, the effective number of parameters is 
much smaller than the nominal size of the regulatory program representation 
(modules) × (regulators) × (cell types).

Module cell-type specific variance estimation. The module variance 
in a given cell type sm t,

2  is estimated from the expression of the module’s ­

http://www.immgen.org/Protocols/ImmGen Cell prep and sorting SOP.pdf
http://www.immgen.org/Protocols/ImmGen Cell prep and sorting SOP.pdf
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member genes across all replicates of the cell type. Although we use an unbi-
ased estimator, we make special considerations for the modules with less than 
10 members. For these modules the variance estimate sm t,

2  is computed by a 
pooled variance estimator across modules with more than ten members but 
still specific to the cell type. The estimated variances in a fine-grained module 
are typically smaller than the variances in its parent coarse-grained module.

Regulatory program fitting as a penalized regression problem. Estimation of 
the activity weights wm,r,t takes the form of a regression problem, but because 
of ‘over-parameterization’ of the problem, it must be ‘regularized’ with an 
extension of the fused Lasso framework33, which gives rise to a penalized 
regression problem of the form

1 1
2 2

2

n
x w a J w

m m t
i t m r t r tri t s ,
, , , ,, ( ),−( ) +∑∑

where J(w) is a chosen penalty. In our case, this penalty is composed of two 
parts, one that promotes sparsity and selection of correlated predictors and 
another that promotes consistency of regulatory programs between related 
cell types.

We assume that only a small number of regulators are actively regulating 
any one module. A standard approach to promoting such sparsity in regres-
sion problems is to introduce an L1 penalty, the sum of absolute values Σm Σr 
Σt | wm,r,t |. However, this penalty tends to be overly aggressive in inducing 
sparsity and thus prunes many highly correlated predictors and selects only 
a single representative. Such aggressive pruning may be inappropriate, as the 
correlated regulators may all be biologically relevant because of ‘redundancy’ 
in densely interconnected regulatory circuits. That can be counteracted by the 
addition of squared terms 12

2Σ Σ Σm r t m r tw( ), , , which yields a composite penalty 
known as ‘Elastic Net’11, as proposed before6,

l k| | ( ), , , ,w wm r tt m r ttrr∑ ∑∑∑ +
2

2

which we write compactly as

l k|| || || ||w wm m1 2 2
2+

An important input to our regulatory program fitting procedure is the ontog-
eny (differentiation) tree (Supplementary Table 13). This tree is encoded as 
an edge list (f ), and with (t1, t2)∈f we denote that cell type t1 is a parent of cell 
type t2. The similarity of the regulatory programs for a particular module in 
two related cell types (t1, t2)∈f can be assessed as a sum of the absolute value 
of the difference of activity weights in the two programs, Σr m r t m r tw w| |, , , ,1 2− . 
The key observation is that | |, , , ,w wm r t m r t1 2−  = 0 if the regulatory relationship 
between regulator r and module m is the same in cell type t2 and its parent 
type t1. More generally, the total difference of the regulatory programs can be 
written as Σ Σ( , ) , , , ,| |t t f r m r t m r tw w1 2 1 2∈ − . We will write this term in a compact 
form as ||Dwm||, where wm is a vector of activity weights for all regulators 
across all cell types concatenated together and D is a matrix of size (RE) × 
(RT), where R is the number of regulators, T is the number of cell types and E 
is the number of edges in the tree. We note that multiplication by the matrix 
D computes the differences between relevant entries of the vector wm. The less 
the regulatory programs change throughout differentiation, the smaller the 
term ||Dwm||. Thus, with this term as a penalty will promote the preservation 
of a consistent regulatory program throughout differentiation.

Combining all the considerations above, the complete objective for fitting 
a regulatory program of a module m is given by

1 1
2 22

2
1 2

2
n

x w a w w Dw
m m t
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,
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Optimization of this objective is somewhat complicated by the fact that absolute ­
value is a non-smooth function and hence direct optimization by methods 
such as gradient descent is not feasible, as these work only on smooth prob-
lems. Alternative methods, such as projected gradients, can be used, but their 
convergence is relatively slow. We therefore opted to use a primal dual interior 
point method34. Different choices of the parameters λ, κ and δ yield different ­

regulatory models as solutions, with different data-fitting and model-­
complexity properties. We scanned sets of parameters in the range (the sched-
ule for each of the parameters λ, κ and δ was geometric, e−7, e−6,…, e3 spanning 
values between 0.001 and 20) and chose the optimal set of parameters with the 
Bayesian information criteria (described below).

To simplify the discussion of the optimization, we introduce the sparse 
predictor matrix A of size (RT) × (T), where A at r T t r t mt,( ) , /− + =1 s  and = 0 ­
otherwise. Furthermore, we note that the optimal wm depends only on the 
mean expression profile of the module’s genes and we can introduce variable 
y

n
xt

mt
i m

m
i t= ∈

1 1
s

Σ , . Hence we can rewrite the objective as
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Finally we can absorb the term k2 2
2|| ||wm  into the first term as follows:
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Regulatory program transfer between coarse-grained and fine-grained 
modules. The fine-grained modules are ‘encouraged’ to have a program similar 
to that of the coarse-grained module in which they are nested. This is accom-
plished by the introduction of an additional penalty term. We will denote the 
already learned regulatory program of a coarse-grained module as w0 and the 
regulatory program of a fine-grained module that we wish to learn as wm. The 
coarse-to-fine version of our objective is then

1
2 2 22
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1 0 2

2|| || || || || || || || || ||y Aw w w Dw w wm m m m m− + + + + −l k g t

where the last term ties the programs of the coarse-grained and fine-grained 
modules. This objective can be transformed into
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Solving the prototypical optimization problem. We note that regulatory-
program-fitting problems for both coarse-grained and fine-grained module 
have been expressed in the following general form

minimize
w

y Xw w Dw1
2 2

2
1 1|| || || || || || .− + +l g

We reformulate that optimization problem by adding variables that decouple 
the penalties:

minimize

subject to

w, , || || || ||

, ,

z d r r z d

r y Xw z w d Dw

1
2 1 1′ + +

= − = =

l g

..

This reformulation enables straightforward derivation of a primal dual interior 
point method34.

Model selection with Bayesian information criterion. The formulation of 
our optimization problem above is dependent on the set of parameters λ, κ 
and δ; we obtain a model by solving the convex problem above for a particular 
combination of λ, κ and δ. Different combinations of these parameters will 
yield regulatory programs of different quality. One way to identify the optimal 
λ, κ and δ is through the use of held-out data or through cross-validation. 
However, a search for these parameters with cross-validation would be pro-
hibitively expensive. As an alternative, we use a model selection approach 
based on the Bayesian information criterion (BIC) to compare models result-
ing from different choices of these three parameters and select the best one. 



©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature immunology doi:10.1038/ni.2587

This criterion compares models, here ‘encoded’ by regulatory programs, based 
on their tradeoff between data log likelihood and degrees of freedom. The log 
likelihood for our model is

LL const( ) .
,

, , , ,,w x w a
m t

i t m r t r tri tm= − −( ) +∑∑∑ 1
2 2

2

s

The computation of the degrees of freedom is somewhat technically involved 
but intuitively simple: an activity weight that remains the same through a 
particular connected portion of the differentiation tree is counted as a sin-
gle degree of freedom. To make this more formal, we consider matrix A and 
construct its counterpart, B. We use Ar,t to denote a column of matrix A. We 
then construct a graph in which nodes correspond to columns of matrix A. 
Given two nodes corresponding to Ar t, 1 and Ar t, 2, the graph will have an 
edge between these two nodes if cell type t1 is a parent of cell type t2, and 
w wm r t m r t, , , ,1 2= . The matrix B will have columns that are sums of columns 
corresponding to connected components in the graph. We eliminate all col-
umns of B that are zeros and the final degrees of freedom are given by df(w) = 
Trace(B(B′B + κ diag(c))−1 B′), where diag(c) is a diagonal matrix with entries 
being the number of columns of A in the connected component associated 
with a column of B.

Hence we can compute the BIC(w) as
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Post-processing of regulatory programs. Once we obtain an optimal regula-
tory program in terms of BIC, we use post-processing to remove regulatory 
relationships for underexpressed regulators. We placed a low expression cutoff 
of 5.5 on the log2 scale. At this cutoff, the correlation between the predictor 
and the target module may very well be due to noise and hence the relation-
ship could be spurious.

Systematic query for known functions of regulators. For each lineage-­
specific module, we automatically queried its regulators in PubMed with the 
name of the lineage(s). For each module that was upregulated or downregu-
lated with differentiation, we queried its regulators with ‘hematopoietic dif-
ferentiation’. All PubMed queries were done on 30 July 2012.

Choice of lineage regulators. For each lineage, we collected the regulators 
deemed active by having a nonzero activity weight and significant expression 
in excess of 9.0 on the log2 scale. For a given lineage, we deemed a regulator 
a lineage activator if its average activity weight across all cell types in the 
lineage and all modules was positive. Analogously, a regulator was deemed a 
lineage repressor if its average activity weight was negative. We subsequently 
ranked the regulators on the basis of their average expression across cell types 
in which the regulator had a role. Hence, the regulators that were frequently 
active in a lineage and, when active, had higher expression were ranked higher 
than were regulators that were infrequently active or had low expression. The 
regulators with the highest expression typically were given the highest total 
activity weight across lineages.

Notably, this procedure, although straightforward, will not reflect all the 
lineage regulators identified by the model. First, those lineage regulators that 
act only during a limited window (for example, early in differentiation) would 
be under-represented by this analysis yet would be captured in the overall 
model in the window in which they act. Second, because of the post-processing ­
step (described above), regulators with high baseline expression can have a 
constant activity weight even if their expression is very lineage specific (for 
example, GATA-3) and thus be under-represented in the recruitment analysis 
(although they too are chosen as regulators in the model).

Motif scanning. We scanned promoters of mouse genes for enriched motifs. 
We downloaded promoter sequences for mouse (mm9) from the genome 
browser website of the University of California Santa Cruz (http://hgdownload.
cse.ucsc.edu/downloads.html). For each gene, we scanned the region starting 

from position –1,000 (base pairs upstream of the transcription start site) and 
ending at position +200 (base-pairs downstream of the transcription start 
site). We represented the nucleotide at position j (relative to –1,000 bp from 
the transcription start site) for gene i as Si,j. We represented each cis-regulatory 
element by a PWM. We compiled a set of 1,651 PWMs from the TRANSFAC 
matrix database (version 8.3)29, the JASPAR database (version 2008)30 and 
experimentally determined PWMs31,32. We denote the PWM of the ‘k-th’ motif 
by Pk, a matrix of size 4 × Lk, where Lk is the length of the motif and Pk(i,j) rep-
resents the probability of encountering the nucleotide j (that is, A, C, G or T) ­
at the ‘i-th’ position. For each gene i, a position along the promoter j and a 
PWM k, we computed the local motif-matching score LOD(i,j,k), defined as 
the log likelihood ratio (LOD score) for observing the sequence given the 
PWM versus a given random genomic background:

LOD i j k P r S P Sk i j r
r

L

b i j r
k

( , , ) log ( , ) log ( ), ,= 
 − 

+ −
=

+ −∑ 2 1
1

2 1

Genomic background was determined as Pb(‘A’) = Pb(‘T’) = 0.3, Pb(‘C’) = 
Pb(‘G’) = 0.2, which represents the nucleotide composition of the mouse 
genome. We then found the best motif instance over the entire promoter 
region, defined as MAX-LOD(i,k) = maxjLOD(i,j,k).

Motif-scoring threshold. We automatically computed a PWM-specific thresh-
old by using the information content of each motif. The information content 
for the ‘k-th’ motif is defined as

IC k L P i j P i jk k k
ji

Lk
( ) ( , ) log ( , )= +

==
∑∑ 2
1

4

1

We defined the PWM-specific threshold for the ‘k-th’ motif as τk, the 1 – 2−IC(k) 
quantile of the PWM LOD distribution across all genes’ promoters. We con-
sidered a ‘hit’ for the ‘k-th’ motif at the ‘i-th’ gene if the best score (MAX-
LOD(i,k)) exceeded the threshold τk.

Motif enrichment in modules. For each module of genes M, and each motif 
k, we computed the P value for enrichment, pe(M,k) of the motif in the mod-
ule relative to that of the entire set of genes assigned to modules serving as 
background. An enrichment of a motif in a module results in higher than 
expected MAX-LOD scores for the genes in this module; to capture this effect, 
we computed the P value by comparing the scores MAX-LOD(i,k) for all genes 
i in the module M and the scores for the entire set of genes assigned to mod-
ules by a one-sided rank-sum test. We then used an FDR of 5% on the entire 
matrix of P values pe(M,k) and declared all P values that passed this procedure 
significant ‘hits’. The FDR was calculated separately for coarse-grained and 
fine-grained modules.

Binding events enrichment. The public data sets obtained by ChIP ­
followed by deep sequencing and ChIP followed by microarray (Supplementary 
Table 11) were downloaded from the GEO (Gene Expression Omnibus) ­
database repository, supplementary material and designated sites in the ­
original publications (Supplementary Table 11; 360 experiments of 109 
unique regulators). The target list defined in each original publication was 
used whenever available. Otherwise, genes that had a binding event reported 
from the position 1,000 base pairs upstream of the transcription start site to the 
position 200 base pairs downstream of the transcription start site were listed as 
targets. In data sets obtained with human samples, gene symbols were replaced 
by the mouse gene symbol wherever a one-to-one ortholog exists accord-
ing to the phylogenetic resource EnsemblCompara35. Only genes included 
in the clustering were considered targets for the purpose of the calculation ­
of enrichment.

The hypergeometric P value was calculated for the size of intersection of 
each module with each target list. An FDR of 10% was used for the entire 
table of P values of all modules and all targets lists. The FDR was calculated 
separately for coarse-grained and fine-grained modules.

http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html


©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

� nature immunologydoi:10.1038/ni.2587

Estimating the significance of regulatory program overlap. We report two ­
P values for each overlap of the three regulation models (from ChIP, ­
cis-elements and Ontogenet). First, we calculated the hypergeometric test for 
two or three groups for which the ‘universe sizes’ were the number of possible 
regulatory interactions including the overlapping regulators. For example, for 
estimation of the significance of the overlap of ChIP and Ontogenet regulatory 
interactions, the ‘universe size’ is the number of regulators that were candi-
dates for Ontogenet and had ChIP information multiplied by the number of 
modules. The ChIP interactions are the enriched modules according to the 
ChIP data set, and the Ontogenet interactions are the regulators chosen for 
each module. Second, we calculated an empirical P value from 10,000 permuta-
tions of the regulators in the regulatory interactions, including the overlapping 
regulators. The last P values were calculated to account for the fact that some 
modules have more regulators than others. The hypergeometric P values and 
the empirical P values are similar for the overlap of each two methods but dif-
fer in significance for the three-method overlap, because the hypergeometric 
score for three groups explicitly takes into account the overlap between each 
two groups, whereas the empirical P value does not.

Functional enrichment. Curated gene sets (C2), motif gene sets (C3) and 
gene ontology (GO) gene sets (C5) from the Molecular Signatures Database 
(version V.3) were downloaded from the Broad Institute website (http://www.
broadinstitute.org/gsea)36. For each group, gene symbols were replaced by 
the mouse gene symbol wherever a one-to-one ortholog exists according to 
EnsemblCompara. Only genes included in the clustering were considered 
functional group members for the purpose of the calculation of enrichment.

A hypergeometric P value was calculated for the size of intersection of each 
module with each functional group. An FDR of 10% was used for the entire 
table of P values of all modules and all functional groups. The FDR was cal-
culated separately for coarse-grained and fine-grained modules, and for the 
different classes of functional annotation (C1, C2, C3 and C5).

Identification of differentiation steps with a change in activity weight of 
regulators. For each module and each edge (differentiation step) of the hemato
poietic tree, the activity weight of the ‘parent’ was compared with the activity 
weight of the ‘child’, which resulted in one of the following classifications: no 
change (activity weights are the same); activator recruitment (parent activity 
weight is 0; child activity weight is positive); activator strengthening (parent 
activity weight is positive and is smaller than that of the child); activator dis-
posal (parent activity weight is positive and child activity weight is 0); repres-
sor recruitment (parent activity weight is 0; child activity weight is negative); 
repressor strengthening (parent activity weight is negative and is larger than 
that of the child); repressor disposal ( parent activity weight is negative and 
child activity weight is 0). For simplicity, we omitted the ‘regulator weakening’ 
option. Those lineage-specific regulators that are assigned constant activity 

weight across all cell types (such as GATA-3) will not be captured by this 
analysis but are part of the model.

Mice. Mice with loxP-flanked Etv5 alleles (Etv5fl/fl)37 were crossed with 
C57BL/6 mice with a transgene encoding Cre recominase driven by the pro-
moter of the gene encoding CD2 to generate mice with T cell–specific ETV5 
deficiency (CD2p-CreTg+Etv5fl/fl, backcrossed three times to the C57BL/6 
strain). The loxP-flanked Etv5 locus is specifically deleted from the genome 
starting in CD25+CD44−CD3−CD4−CD8− thymic precursors (DN3) with 
~80% deletion efficiency in γδ thymocyte subsets, as inferred from the analy-
sis of Cre-activity-reporter mice (CD2p-CreTg+Rosa-STOPfl/fl-EYFP).

Flow cytometry. Intracellular staining (Cytofix/Cytoperm Kit; BD Biosciences) 
and intranuclear staining (FoxP3 Staining Kit; eBioscience) were done as 
described24. The following antibodies were used: anti-TCRδ (GL3), anti-
CD24 (HSA, M1/69), anti-CD44 (IM7), anti-CD62l (MEL-15), anti-IL-17A 
(ebio17B7) and anti-RORγt (AFKJS-9; all from eBioscience); and anti-Vγ2 
(UC3-10A6), anti-Vδ6.3 (8F4H7B7), anti-CCR6 (140706) and anti-CD27 
(LG.3A10; all from BD Biosciences). Anti-Vγ1.1 (2.11) was purified from 
culture supernatant and was biotinylated with the FluoReporter Mini-Biotin-
XX Labeling Kit (Invitrogen). Data were acquired on an LSRII (BD) and were 
analyzed with FlowJo software (Treestar).
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