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The Immunological Genome (ImmGen) Project is a consortium of 
laboratories aimed at establishing a comprehensive database of gene 
expression in the mouse immune system1. As part of this collabora-
tion, we have identified the gene-expression programs of natural killer 
cells (NK cells) and have analyzed this in the steady state and during 
the response to a viral infection to generate a resource for investi-
gating NK cell biology. The immune system of vertebrates is classi-
cally divided into innate and adaptive branches. The innate immune 
system responds rapidly to infectious agents, whereas the adaptive 
response requires cell division and the differentiation of effector cells.  
NK cells and innate-like lymphocytes, which include γδ T cells, 
invariant NKT cells (iNKT cells), intestinal epithelial lymphocytes, 
B-1 cells and marginal-zone B cells, have both adaptive and innate 
features2,3. These innate B cells and T cells use receptors encoded by 
somatically rearranged genes to recognize specific structures from 
microbes and self antigens2. Functionally, innate-like lymphocytes 
mount quick effector responses such as cytolysis and the rapid secre-
tion of cytokines, chemokines and antibodies.

Since the first description of NK cells4,5, their relationship to 
lymphoid and myeloid cells has been a topic of debate. The ability 
of certain T cell populations, such as γδ T cells and some activated  
T cells bearing αβ T cell antigen receptors (TCRs), to mediate ‘NK 
cell–like’ cytolysis, as well as the shared expression by NK cells and 
T cells of many cell-surface antigens and effector molecules (such as 
CD2, CD7, CD90, perforin, granzyme A and interferon-γ (IFN-γ)),  
have led to the proposal that NK cells might simply represent a 

developmental or differentiation stage of T cells. However, the lack 
of productive rearrangement of TCR genes in mature NK cells and 
the development of NK cells in mice lacking a thymus or the recom-
binases required for TCR rearrangement unambiguously distinguish 
NK cells as a third, distinct lineage of lymphoid cells6. A relationship 
between NK cells and myeloid cells has been proposed on the basis of 
shared expression of cell-surface markers, such as CD11b and CD11c. 
However, subsequent studies defining the properties of hematopoietic 
progenitor populations have demonstrated that most NK cells are 
derived from progenitors shared with lymphocytes rather than with 
myeloid cells7.

Global transcriptional analysis is a powerful approach that has yielded 
new insights into the biology of specific cellular subsets8,9. Early studies 
using this approach to analyze human and mouse NK cells identified 
sets of genes specifically expressed in NK cells, as well as transcriptional 
changes that occur during the activation of NK cells in vitro10–12. In this 
study, we have systematically defined the transcriptome of mouse NK 
cells in several contexts, including activation states and relative to all 
other lymphocyte and myeloid populations profiled by the ImmGen 
consortium. Our transcriptional profiling technique was multidi-
mensional, which makes this study different from previous analyses 
because of the large number of data sets (such as conditions and cell 
types) compared simultaneously. The findings presented here provide 
molecular definitions of NK cell identity and function and provide both 
new insights into the nature of NK cells and a publicly available resource 
that documents the transcriptome of NK cells in various states.
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Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional 
relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes 
encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes  
with cytotoxic CD8+ T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, 
many encoding molecules with unknown functions. Resting NK cells demonstrate a ‘preprimed’ state compared with naive  
T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known 
and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene 
expression of NK cells in various states.
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RESULTS
Transcription-based organization of the main leukocyte subsets
To establish a molecular definition of NK cell identity, we investi-
gated the relatedness of naive NK cells to other leukocyte populations  
using principal-component analysis (PCA), a method that identifies 
gene-expression patterns (principal components) that best explain 
variance across a data set. Delineation of population relationships 
with the three most informative principle components, as defined by 
the 15% of genes with the most variable expression across all splenic 
leukocyte populations, showed segregation of the populations into 
five discrete clusters (Fig. 1a). Lymphoid cells, including B cells, NK 
cells, iNKT cells, γδ T cells and αβ T cell subsets, formed groups 
distant from macrophages in the PCA plot. Whereas plasmacytoid 
dendritic cells grouped close to macrophages, conventional CD11c+ 
dendritic cell populations clustered between macrophages and lym-
phoid cell subsets. Among lymphoid cells, there was a distinct sepa-
ration of a cluster containing B cell subsets and a cluster containing 
subsets of NK cells, iNKT cells, γδ T cells and αβ T cells (called the 
‘NK cell–T cell complex’ here). Notably, NK cells and other innate-like 
T lymphocytes did not discernibly segregate from the adaptive T cell 
populations at this level of resolution.

Comprehensive pairwise comparison of each NK cell–T cell popu-
lation with B cell populations and myeloid populations (macrophages, 
DCs and plasmacytoid DCs), followed by identification of the inter-
section of all pairwise comparisons, identified a 24-gene signature 
that distinguished subsets of resting NK cells, iNKT cells, γδ T cells 
and αβ T cells from other leukocyte populations (Fig. 1b). This group 
showed considerable enrichment for genes (in parentheses below) 
encoding the components of the immunoreceptor tyrosine-based acti-
vation motif signaling pathway, including signaling molecules known 
to regulate the activation of NK cells–T cells, such as Lck, Zap70, Tec 
kinases (Itk and Txk), PKC-θ (Prkcq)13, STS-2 (Ubash3a), RNF125 
(Rnf125), and adaptors (Cd247, Lat, Skap1, Sh2d2a and Dok2)14. The 
finding of such prominent enrichment for these signaling molecules 
by unbiased evaluation reflects the shared biology of NK cells and  
T cells and provides confirmation that this functional similarity in sig-
naling constitutes a large component of the overall similarity between 
NK cells and T cells.

Molecular organization of the NK cell–T cell complex
PCA of the 15% of genes with the most variable expression across 
the nine NK cell–T cell complex populations showed grouping of 
the populations of adaptive T cells (Fig. 2a). In contrast, the innate 
populations failed to group together, with only the iNKT cell subsets  
(CD4+ and CD4− iNKT cells) showing a close relationship. We 
observed a similar organization by hierarchical clustering (Fig. 2b). 
We hypothesized that despite the diversity of the innate populations 
of the NK cell–T cell complex, transcriptional commonalities would 
exist that would distinguish innate populations from adaptive T cells. 
To investigate these shared programs, we identified genes with signifi-
cantly different expression in each innate population relative to their 
expression in adaptive T cells and assessed conservation across the 
four comparisons. The group of 112 genes with the most significant  
upregulation by resting NK cells and at least one other innate cell 
subset relative to their expression in αβ T cell subsets was enriched 
for genes encoding surface and signaling receptors and molecules 
(Fig. 2c). These included genes encoding activating and inhibitory 
NK cell receptors (NKRs; products encoded in parentheses), such as  
Fcgr3 (CD16), Ncr1 (NKp46), Klrc2 (NKG2C), Klrk1 (NKG2D), Slamf7 
(CRACC), Klra5 (Ly49E), Klra9 (Ly49I), Klrc1 (NKG2A); genes encod-
ing transmembrane proteins and other surface receptors, such as Il12rb2, 
Fasl, Kit and Cd7; genes encoding integrins, such as Itga2 (CD11b) 
and Itgax (CD11c); genes encoding kinases, such as Syk and Lyn; and 
genes encoding adaptors, such as Fcer1g (FcRγ), Tyrobp (DAP12), Lat2 
(NTAL), Sh2d1b1 (EAT-2) and Clnk. Many of these genes with different 
expression have been shown to have higher expression in innate lym-
phocytes, which provides confirmation of these data8,15,16. In addition, 
we found an additional set of genes (Fgl2, Sulf2, Lrrk1, Aoah and Car2) 
with a distinctive expression pattern in NK cells and innate lymphocytes, 
but the function of the gene products in these lineages is unknown. 
Staining for a representative set of cell-surface antigens and intracel-
lular molecules showed that in most cases, the transcript measurements 
were reflected in the frequency of NK cells, iNKT cells or γδ T cells that 
stained positive for these markers (Fig. 2d,e).

Given the observation that unprimed NK cells, iNKT cells and γδ  
T cells respond rapidly to stimulation, it was not unexpected that resting 
NK cells had higher expression of genes encoding effector molecules, 

Figure 1  NK cells and T cells show close 
similarity at the transcriptome level. (a) PCA 
of splenic leukocyte populations, showing the 
top three principal components (PC1–PC3) 
and their contribution to intersample variation 
(in parentheses). B T1–B T3, B cells of 
transitional types 1–3; B Fo, follicular B cells; 
B1a, B-1a cells; B MZ, marginal zone B cells; 
B GC, germinal center B cells; pDC 8− or pDC 
8+, CD8− or CD8+ plasmacytoid DCs; MF, 
macrophage(s); DC 4+ or DC 8+, CD4+ or CD8+ 
DCs; DC 8−4−11b+, CD8−CD4−CD11b+ DCs; DC 
8−4−11b−, CD8−CD4−CD11b− DCs; NK,  
NK cells; Tγδ, TCRγδ T cells; Treg, regulatory  
T cells; iNKT 4+ or iNKT 4−, CD4+ or CD4−  
iNKT cells; T 4+ Nve or T 8+ Nve, naive CD4+ or 
CD8+ T cells; T 4+ Mem or T 8+ Mem, memory 
CD4+ or CD8+ T cells. (b) Gene expression 
in the NK cell–T cell complex and in B cells, 
dendritic cells, and macrophages, presented as 
a heat map in decreasing order of significance 
(δ score; left margin); expression is relative to 
the median expression value of all analyzed populations. Green, molecules in the immunoreceptor tyrosine-based activation motif signaling pathway; 
blue, molecules in the Wnt–β-catenin pathway; protein designations in parenthesis. Data presented are based on the analysis of a minimum of three 
independent replicates per cell type.
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including IFN-γ (Ifng), proteases (Gzmb, Gzma, Ctsc (cathepsin C),  
and Ctsd (cathepsin D)) and protease inhibitors (Serpinb6b and 
Serpinb9). Expression of several genes encoding molecules involved in 
vesicle transport (such as Rab31, Sytl2 and Sytl3) and in the regulation 
of the cytoskeleton (such as Sept11 and Myo6) was higher in NK cells 
and/or iNKT cells and γδ T cells than in αβ T cells, which suggested 
that changes in vesicle trafficking or cytoskeletal rearrangements may 
affect the generation or release of lytic granules (Fig. 2b). In addi-
tion, genes encoding transcription factors, including Tbx21 (T-bet) 
and Id2, had higher expression in the NK cell and iNKT cell line-
ages than in αβ T cells (Fig. 2c,e), consistent with reports indicating  
the requirement for these factors in the development and function 
of these cells17. Notably, the innate genes identified in this analysis 

did not merely represent genes characteristic of cell activation; only 
a fraction of genes with higher expression in NK cell and innate-like 
T cell populations than in αβ T cells corresponded to genes induced 
during cell activation and/or proliferation.

Consistent with our observation that the innate NK cell–T cell 
subsets were heterogeneous, only three genes (Rbpms, Tmem176b 
and Spry2) had significantly higher expression in resting NK cell, 
iNKT cell and γδ T cell populations than in αβ T cells (Fig. 2c). The 
transcriptional coactivator RBPMS (encoded by Rbpms) regulates 
transforming growth factor-β signaling18. Given that transform-
ing growth factor-β is critical for development of the iNKT cell and  
γδ T cell lineages19, it is notable that the more immature thymic  
iNKT cell and γδ T cell populations had the highest expression  
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Figure 2  Organization of the innate  
and adaptive branches of the NK  
cell–T cell complex. (a) PCA of NK  
cells, innate-like T cells and adaptive  
αβ T cell populations (presented  
as in Fig. 1a). (b) Hierarchical  
clustering of the NK cell–T cell  
complex populations, based on Euclidean  
distances of averaged arrays of a population,  
with all genes expressed in any of these  
populations included in the analysis.  
(c) Overlapping of genes expressed in NK cells  
(NK), γδ T cell (γδ T) and iNKT cells (CD4+  
(iNKT 4+) or CD4− (iNKT 4−)) but not in adaptive αβ  
T cells (αβ T); these genes met a δ-score threshold  
of 0.5 (genes unique to resting NK cells, Fig. 3). Color  
indicates function of molecule encoded: green, effector molecule; purple, surface molecule;  
blue, transcription factor. (d,e) Frequency of NKR-expressing cells (d) and cells expressing  
T-bet or Syk (e) among NK cells and innate-like lymphocytes (as in c) relative to their frequency  
among TCRαβ+ T cells, assessed by flow cytometry (x axis, fluorescence intensity; y axis, percentage of maximum). (f) Abundance of Rbpms mRNA in 
iNKT cell and γδ T cell populations isolated from thymus or spleen, presented as a normalized microarray. (g) Expression of Spry1, Spry2 and Spry4 by 
splenic leukocyte populations (above), presented relative to the median expression value of all analyzed populations. Spry3 expression was not above 
background in any population and is not presented here. Data are representative of two experiments (error bars (d–f), s.e.m.). Data presented are based 
on the analysis of a minimum of three independent replicates per cell type (a–c).
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of Rbpms (Fig. 2f). Although expression of 
Tmem176b (which encodes the transmem-
brane protein Tmem176b) was specific to innate NK cell–T cell 
subsets (Fig. 2c), its expression is much lower in those subsets than 
in DCs. Sprouty homolog 2 (Spry2) is a member of the Sprouty family 
of transcriptional regulators; there are four such genes in higher ver-
tebrates, but we found that only Spry2 had high and specific expres-
sion in NK cell, iNKT cell and γδ T cell populations (Fig. 2g). Given 
that these proteins are involved in a negative feedback mechanism to 
limit antigen receptor–mediated signaling20, Spry2 might represent 
an additional regulator of a developmental or activation program of 
innate lymphocytes. These analyses confirmed known functions of 
NK cells and innate-like T cells and identified previously unknown 
molecular components of innate-like lymphocyte populations.

A transcriptional signature that defines resting NK cell identity
The shared repertoire of surface receptors, signaling molecules and 
transcription factors expressed by NK cells and other innate-like  
T cell populations blurs the distinctions among these cell types. We 
therefore defined a resting NK cell signature by identifying genes with 
higher expression in NK cells than in all other leukocyte populations. 
Nearly half of the 25 genes with significantly higher expression in  
NK cells than in all other leukocytes encoded NKRs, the most specific 
of which were Klra8 (Ly49H) and Ncr1 (NKp46; Fig. 3a). Although 
Ly49H was expressed in only 50% of NK cells in C57BL/6 mice, 
it was not detectable in any other leukocyte population (Fig. 3b).  
NKp46 has been shown to have selective expression in NK cells, 
with two exceptions: rare T cell subsets21,22 (Fig. 2d), and a mucosal 
population of innate lymphoid cells that express the transcription 
factor RORγt23. Additional genes ‘preferentially’ expressed by NK 
cells that have been identified include those encoding a sphingosine 
1-phosphate receptor (S1pr5)24, adhesion molecules (Mcam25 and 
Itga2 (CD49b)26) and effector molecules (Gzma, Gzmb and Prf1)27,28. 
Among the genes whose expression was uniquely higher in NK cells, 
Adamts14, Serpinb9b and Styk1 have not yet been reported to be 
expressed by this subset of lymphocytes, to our knowledge. The pro-
tease ADAM14 (Adamts14) processes extracellular matrix proteins29, 
which we speculate may be important for the migratory ability of NK 
cells. The serine-protease inhibitor Serpinb9b (Serpinb9b) inactivates 
granzyme B in an irreversible manner30 and is needed to protect cyto-
toxic lymphocytes from granzyme B–mediated cell death31 and may 
protect NK cells from being killed by their own cytolytic molecules. 

The serine-threonine-tyrosine kinase Styk1 (Styk1) shares homol-
ogy with receptors for platelet-derived growth factor and fibroblast 
growth factor and has been suggested to regulate cell proliferation 
and survival by activating both mitogen-activated protein kinases 
and phosphatidylinositol-3-OH kinase32, but its function in NK 
cells is unknown, and it has not been identified as a potentially NK 
cell–restricted molecule expressed in the hematopoietic system. These 
molecules represent intracellular proteins now identified as distin-
guishing NK cells from other resting leukocytes.

We further sought to understand the regulatory control of NK 
cell ‘uniqueness’ and identified putative transcriptional regulators of 
the signature genes of resting NK cells through the use of a network 
modeling approach (Supplementary Note 1). To maximize regula-
tor discovery, we used a lower threshold of statistical stringency to 
identify a total of 93 genes with ‘preferential ‘expression in NK cells 
(Supplementary Table 1). Of the predicted regulators of those genes, 
we identified many genes encoding molecules known to influence 
the development or function of NK cells, such as Tbx21, Eomes, Mitf, 
Sfpi1, Id2, Smad3, Runx3 and Stat5b17 (Fig. 3c). However, most of 
the transcriptional regulators identified have no known role in NK 
cell development, despite having strong associations with molecules 
encoded by genes with preferential expression in NK cells. For exam-
ple, KLF12 was predicted to regulate 80% of the identified NK cell fin-
gerprint (Fig. 3c); however, the role of this zinc-finger protein in NK 
cells is unknown. These data suggest that a rich biology related to the 
transcriptional definition of NK cell identity remains undiscovered.

Transcriptional priming of effector functions of NK cells
NK cells are preprimed to allow rapid activation of some effector 
functions. We explored this at the genome level by identifying genes 
with high expression in naive NK cells and induced in effector CD8+ 
T cells after infection with vesicular stomatitis virus (VSV) or Listeria 
monocytogenes relative to their expression in naive CD8+ T cells. The 
expression programs shared by naive NK cells and effector CD8+  
T cells included genes encoding molecules with effector functions, 
NKRs, molecules involved in adhesion and homing, transcription 
factors, and signaling molecules (Fig. 4a,b). Killing of infected cells is 
a critical effector function of both NK cells and effector CD8+ T cells 
and is mediated by the release of perforin and granzymes; accordingly, 
expression of Gzma and Gzmb was high in both naive NK cells and 
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Figure 3  Molecular uniqueness of resting NK 
cells. (a) Heat map of genes with the most 
significant difference in expression in NK cells 
relative to all other cell populations, presented  
(as in Fig. 1a) in decreasing order of significance 
(full list of genes, Supplementary Table 1).  
(b) Ly49H expression in splenic leukocytes  
(left; number above bracketed line indicates 
percent Ly49H+ cells), and expression of NKp46 
and TCRγδ by Ly49H+ cells (right; outlined area 
indicates TCRγδ−NKp46+ cells). (c) Proportion 
of the 93 NK cell signature genes in a regulated 
by the transcriptional regulators (encoded by the 
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Data presented are based on the analysis of a 
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effector CD8+ T cells. Naive NK cells and effector CD8+ T cells also 
shared expression of genes encoding other effector molecules, such as 
Ifng and Ccl5 (RANTES; Fig. 4a and Supplementary Table 2). Naive 
NK cells and effector CD8+ T cells shared expression of genes encod-
ing several activating NKRs (such as Klrc2 (NKG2C), Klrk1 (NKG2D) 
and Slamf7 (CRACC)) and inhibitory NKRs (such as Klrc1 (NKG2A) 
and Klrg1 (KLRG1)); Fig. 4a,b), consistent with published observa-
tions33. For effector cells to respond to foreign invaders, they must 
acquire the ability to migrate to sites of infection, and this is largely 
attributed to an increase in the surface expression of chemokine 
receptors and adhesion molecules. We observed that naive NK cells 
had high basal expression of genes encoding the chemotactic pro-
teins CCR2 (Ccr2) and CCR5 (Ccr5) and the cell-adhesion proteins 
CD11b (Itgam), CD11c (Itgax) and CD29 (Itgb1), rather than these 
genes requiring induction in effector CD8+ T cells (Fig. 4a,b). Thus, 
the concerted action of these molecules may influence the appropri-
ate tissue distribution of NK cells and effector CD8+ T cells. Genes 
encoding transcription factors (such as Tbx21 (T-bet), Id2 (Id2) and 
Prdm1 (Blimp-1)) were also expressed in naive NK cells and effector 
CD8+ T cells (Fig. 4a,b), which suggested a common differentiation 
program. The higher expression of Prdm1 (Blimp-1) in naive NK cells 
was notable, given the role of this transcription factor in regulating 
the differentiation of effector CD8+ T cells34,35.

A comparison of the expression of genes encoding effector  
molecules showed that on average, their expression was higher in  
naive NK cells than in effector CD8+ T cells (Fig. 4c). This suggested that 
in terms of transcriptional prepriming, NK cells have maximal expres-
sion of these effector molecules as part of their persistently ‘alerted’ state. 
These findings demonstrate that the preprimed state described before 
for Ifng and genes encoding granzymes also applies transcriptome wide 
to many additional genes encoding putative effector molecules.

Transcriptional profile of NK cells during infection
The transcriptional baseline defined above represents a single state 
(the resting state) of an NK cell’s existence. To explore NK cell changes 
during pathogen-specific activation, we generated a kinetic portrait 
of gene expression by profiling Ly49H+ NK cells as naive cells before 
infection with mouse cytomegalovirus (MCMV), and after MCMV 
infection as early effector cells (day 1.5 after infection), late effector 
cells (day 7 after infection) and memory cells (day 27 after infection). 
The largest changes occurred early during infection, as shown by the 
difference in expression of many genes in activated Ly49H+ NK cells 
(upregulation of 875 genes; Fig. 5a and Supplementary Table 3). Most 
of this response was diminished by day 7 after infection, although 
expression of certain genes was sustained. On the whole, late effector 
NK cells at day 7 after infection and memory NK cells at day 27 after 
infection were more similar to each other in their gene-expression pat-
terns than was any other population pair (Fig. 5b). Additionally, many 
genes were specifically upregulated in memory NK cells (Fig. 5a),  
which supported the proposal that NK cell memory reflects a unique 
state different from that of naive or effector NK cells36.

The transcriptional profile of NK cells at day 1.5 after infection 
was clearly distinct from the transcriptional profile of NK cells at 
all other times points based on the Euclidean distance among the 
various NK cell populations (Fig. 5b). Genes upregulated at day 
1.5 after infection included those encoding indicators of inflam-
mation (such as Cd69, Ifih1, Ifitm1 and Ifitm3), proliferation 
(such as Il2ra (CD25)) and effector function (such as Ifng and 
GzmB; Fig. 5a and Supplementary Table 3). We also confirmed 
higher expression of a set of these molecules by flow cytometry  
(Fig. 5c). Published studies have demonstrated that signaling by IL-12  
through STAT transcription factors promotes IFN-γ production37. 
The expression of genes encoding the IL-12 receptor (Il12rb1) and 
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STAT1 and STAT2 (Stat1 and Stat2) increased early after MCMV 
infection (Fig. 5a), which suggested that activated NK cells become 
sensitized to signaling via IL-12 and STAT proteins to mediate optimal 
production of effector cytokines such as IFN-γ. We found more phos-
phorylated STAT1, STAT3 and STAT4 at day 1.5 after infection than 
in naive NK cells (Fig. 5c). Although Tbx21 (T-bet) was expressed in 
resting NK cells (Fig. 2e), both transcript and protein were further 
upregulated after infection (Fig. 5a,c); whether the higher expression 
of this transcription factor influences the effector function of NK cells 
remains to be determined. Because NK cells are such potent effector 
cells when activated, these cells must also be regulated immediately so 
that uncontrolled inflammation in the environment is not generated; 
this was reflected in the higher expression of the genes encoding the 
suppressors of cytokine signaling SOCS1 and SOCS3 at this early 
time point (Fig. 5a). Indeed, IFN-γ production by NK cells peaked 
at day 1.5 after infection but was rapidly abrogated (data not shown), 
probably because of the activity of SOCS proteins38. In addition, NK 
cells transcribed and expressed IL-10 early after MCMV infection 
(Fig. 5a), which would serve to regulate the magnitude of the immune 
response and limit pathology39. Thus, both proinflammatory and 
regulatory molecules exerted their influence on the activation and 
effector function of NK cells early after infection with MCMV.

Day 7 after MCMV infection marks the peak of clonal expansion 
for Ly49H+ NK cells40. Consistent with the observation that Ly49H+ 
NK cells are capable of population expansion of 100- to 1,000-fold 
during infection with MCMV40, the expression of genes encoding 
regulators of the cell cycle (CDC (cell-division cycle) proteins) and 
a protein associated with cellular proliferation (MKI67) was higher 
at day 7 (Fig. 5a and Supplementary Table 3). The expression of 
genes encoding transcription factors shown to regulate the prolifera-
tion and survival of T lymphocytes, including Foxm1 (ref. 41) and 

Klf13 (ref. 42), was also higher in Ly49H+ 
NK cells at day 7 than in naive Ly49H+ NK 
cells (Fig. 5a). Additionally, we observed 
higher expression of Klrg1 (KLRG1), Itgam 
(CD11b) and Thy1 (CD90), as both tran-
script and protein, in Ly49H+ NK cells at 

day 7 after infection than in resting NK cells (Fig. 5a,d). These data 
demonstrated that the transcriptional changes for these markers rep-
resented all Ly49H+ NK cells rather than representing a subset.

After the peak of the response of effector Ly49H+ NK cells to infec-
tion with MCMV, a contraction phase occurs in which most effector 
cells undergo cell death and leave behind a long-lived memory NK cell 
pool that persists for months after the initial infection40,43. Consistent 
with the beginning of the contraction phase of the NK cell response 
at approximately day 7 after infection, expression of the antiapoptotic 
protein Bcl-2 was lower at day 7 than at earlier times after infection 
(Fig. 5d). At day 27 after infection, expression of Ly6c1 was higher 
in memory NK cells than in resting NK cells (Fig. 5a), a result we 
confirmed by cell surface staining (Fig. 5e). In summary, these data 
explored the transcriptional dynamics of NK cells during infection 
with MCMV and further suggested that many cellular processes are 
involved in the differentiation of naive NK cells into effector and 
memory cells, despite the prepriming of some effector mechanisms.

Effector NK cell and CD8+ T cell differentiation
The effector response to infection is characterized by the migration 
of effector cells from lymphoid tissues to nonlymphoid tissues, clonal 
expansion, the secretion of antiviral cytokines and the cytolysis of 
infected cells. Although some effector functions are preprimed, NK 
cells rely on migration to secondary lymphoid organs and dendritic 
cell–derived signals to become fully functional24. To define a transcrip-
tional program central to effector differentiation, we examined changes 
in gene expression common to the differentiation of NK cell and CD8+ 
T cells in response to infection. To identify the appropriate time points 
for comparison, we calculated correlations between the gene-expression  
changes in NK cells on days 1.5 and 7 after MCMV infection relative 
to that of CD8+ T cells at each time point after infection with either 
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to MCMV infection is dominated by an early 
activation response, followed by effector and 
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(subsets listed at right) significantly induced at 
any time point after infection relative to their 
expression in naive Ly49H+ NK cells, grouped 
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(c–e) Surface expression of CD69 and CD25 
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VSV or L. monocytogenes (Fig. 6a); this showed that NK cells on day 7  
after infection were, on the whole, transcriptionally more similar 
to effector CD8+ T cells than to NK cells on day 1.5 after infection. 
Furthermore, this response most closely resembled the CD8+ T cell 
response at day 6 after infection with either VSV or L. monocytogenes.  
We therefore used the three time points after infection with the 
strongest correlation (VSV at days 6, 8 and 15, and L. monocytogenes  
at days 8, 10 and 15) for comparison with NK cells at day 7.

We identified 32 genes with significantly altered expression in effec-
tor NK cells and CD8+ T cells relative to the expression of those genes 
in their naive counterparts (Fig. 6b and Supplementary Table 4). 
These included genes encoding transcription factors (such as Runx3, 
E2f2, Hmgb2, Zmiz1 and HopX), migration and adhesion molecules 
(such as Itga1 and Ccl9) and an effector molecule (Gzmk). We detected 
KLRG1 on the surface of both Ly49H+ NK cells (Fig. 5d) and antigen-
specific CD8+ T cells undergoing clonal expansion (Fig. 4b); this may 
provide a means of regulating cells undergoing rapid cell division and 
of limiting collateral damage to host tissues.

Comparison of the effector responses of NK cells and CD8+ T cells 
on a gene-by-gene basis showed that the magnitude of gene induc-
tion was lower in NK cells than in CD8+ T cells (Fig. 6b); the median 
gene induction in NK cells was 85% of that in CD8+ T cells (P = 0.039 
(Student’s two-tailed t-test assuming unequal variances)). Whereas 
seven genes had an induction in CD8+ T cells of greater than twofold, 
no gene reached an induction greater than twofold in NK cells (Fig. 6b).  
That smaller magnitude of induction was due mainly to higher base-
line expression of these genes in NK cells; their expression in naive 
CD8+ T cells was (on average) 58% their expression in naive NK cells 
(Fig. 6c; slope = 0.58; 95% confidence interval, 0.36–0.79). Klrg1 also 
followed this trend, but to a greater degree, with high expression in 
naive NK cells (67-fold higher than in naive CD8+ T cells; Fig. 6c). 
We concluded that because NK cells are naturally primed for rapid 
responses to pathogens, the magnitude of their transcriptome-wide 
induction was generally smaller than the specific responses of effector 
CD8+ T cells, as observed before for Ifng and Gzmb44.

A conserved program underlying memory
During the second phase of the immune responses of both NK cells 
and CD8+ T cells, most effector cells die, but those that survive go on 
to seed a pool of long-lived memory cells that can subsequently acquire 
effector functions much more rapidly after reexposure to antigen40,45. 
To better understand the underlying program that establishes these 
functions, we identified the transcriptional changes that accompany 
memory-cell differentiation. Using a published adoptive-transfer 
system40, we transferred purified NK cells from wild-type mice into 
Ly49H-deficient hosts (Fig. 7a). After infection with MCMV, Ly49H+ 
NK cells underwent massive population expansion over the course of 
7 d, followed by a contraction phase and the generation of long-lived 
memory NK cells isolated at day 27 after infection (Fig. 7b). In contrast 

to naive Ly49H+ NK cells or endogenous Ly49H− NK cells, a higher 
frequency of memory NK cells expressed CD11b and a lower frequency 
expressed CD27 (Fig. 7c), consistent with published observations40.

We compared the gene-expression profiles of memory Ly49H+ NK 
cells (day 27 after infection with MCMV) and memory CD8+ T cells 
(generated after infection with VSV or L. monocytogenes) with those 
of naive Ly49H+ NK and CD8+ T cells, respectively, and identified 
a common set of 47 genes that were coordinately regulated during  
the differentiation of naive cells into memory cells (Fig. 7d 
and Supplementary Table 5). Memory-specific transcripts 
included genes encoding molecules involved in signaling 
potential (such as S100a6 and Ptpn4), effector function (such 
as Gzmb, Fasl and Sytl2), migration (such as Sell (CD62L) and 
Itga1 (CD49a)) and apoptosis (such as Casp1 and Pmaip1). 
A subset of those identified genes, including S100a6, Casp1, 
Itga1, Ly6c1 and Gzmb, are also upregulated in memory CD8+ 
T cells in the lymphocytic choriomeningitis virus model of the 
memory differentiation of CD8+ T cells46. Flow cytometry con-
firmed upregulation of Ly6C and CD49a and downregulation  
of CD62L and CD55 in both memory NK cells (Fig. 7e) and 
memory CD8+ T cells (Fig. 7f), with CD49a and CD55 being the 
newly identified cell-surface makers of memory NK cells and  
T cells. In addition, we identified a transcription factor, Hopx 
(Hopx), that was upregulated in memory cells. Published reports 
that Hopx is upregulated in induced regulatory T cells and effector 
memory T cells and is critical for the survival of activated mouse  
T helper type 1 effector-memory cells47,48 suggest that this regulator 
may also promote the persistence of NK memory cells after infec-
tion. Analysis of expression intensity showed that similar to gene 
induction in effector populations, the magnitude of induction was 
generally greater in memory CD8+ T cells than in memory NK cells  
(slope = 1.50; 95% confidence interval, 1.28–1.72) (Fig. 6b,c). 
Together these results demonstrated a common transcriptional 
program conserved in the memory differentiation of NK cells and 
CD8+ T cells in response to infection.
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DISCUSSION
A chief goal of this work was to define, from the transcriptome-wide 
perspective, NK cells in various states to generate new insights and 
a resource describing the specific genes involved with NK cell func-
tions. We used the breadth of cell populations available from the 
ImmGen Project to explore transcripts that define the identity of NK 
cells in a more robust and in-depth perspective than provided by pub-
lished analyses10–12. Our results have shown extensive transcriptional 
differences between NK cells and other leukocyte populations far 
beyond the few specific markers commonly used to identify these cells 
by flow cytometry. In addition, we found that few transcripts were 
uniquely specific to NK cells, with many being shared with other cell 
types of the immune system, particularly T cells. Our data provide a 
genome-wide context for the interpretation of NK cell functions and 
should accelerate the discovery of pathways that regulate the activa-
tion states of NK cells. We have demonstrated a close transcriptional 
relatedness between naive NK cells and innate-like T cells, which 
suggests that their gene-expression profiles reflect a functional simi-
larity rather than a developmental similarity. The abundance of cell-
surface receptors and signaling molecules expressed by NK cells and 
innate-like T cells is consistent with their role as primary sentinels and 
demonstrates a wealth of previously unknown signaling mechanisms 
for further targeted exploration.

Although NK cells are distinct in their innate properties, they 
also have properties associated with adaptive CD8+ T cells, includ-
ing cytotoxicity and memory. Our work has provided a systematic 

identification of the genes associated with these common activities 
and has identified hundreds of genes not previously known to be asso-
ciated with these functions. We found elements of the effector and 
memory NK cell differentiation signature that were shared by effector 
and memory CD8+ T cells, which suggests conservation between the 
NK cell and CD8+ T cell lineages of some activation mechanisms. 
However, this must be interpreted in the context of dynamic changes 
in activation state, as shown by the distinct NK cell transcriptomes 
at each stage of differentiation from naive cell to early effector cell 
to late effector cell to memory cell. Although understanding the 
function of NK cell memory is in its infancy, one implication of a  
defined gene-expression signature that corresponds to memory dif-
ferentiation is that specific genes could be useful as surrogate markers 
for memory NK cells with the greatest potential to confer immuno-
logical potential.

As for αβT cells, the memory NK cell differentiation signature 
included genes both unique to the memory state (such as Casp1, Fasl, 
and Ly6c1) and initially expressed in effector cells and maintained 
in memory cells (such as Itga1 and Hopx), which represent genes 
that have not been previously appreciated as having a potential role 
in NK cell memory and are worthy of further study. This suggests 
that the transcriptome of memory NK cells represents a composite 
of genes uniquely expressed by these long-lived cells and those main-
tained from prior stages of differentiation, possibly to allow quick 
reexpression after secondary exposure to antigen. We speculate that 
the expression pattern of the memory repertoire, rather than the 
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Figure 7  Common memory responses of NK  
cells and CD8+ T cells. (a) Experimental  
protocol: wild-type NK cells (1 × 105) from  
C57BL/6 (CD45.1+) mice were transferred  
into Ly49H-deficient (Ly49H−) C57BL/6  
(CD45.2+) mice, followed by infection of  
recipient mice with MCMV. (b) Frequency of  
transferred Ly49H+ CD45.1+ and Ly49H−  
CD45.1+ NK cells in the total NK1.1+TCRβ−  
population of the recipient mice in a after  
infection with MCMV. (c) Frequency of CD27-  
and CD11b-expressing cells among transferred  
Ly49H+ CD45.1+ and endogenous Ly49H−  
CD45.1+ NK cells in the recipient mice in a at  
day 21 after infection with MCMV. (d) Expression  
of commonly induced genes in memory CD8+  
T cells and NK cells in the recipient mice in a,  
presented relative to expression in their naive  
counterparts. (e,f) Expression of Ly6c, CD49a,  
CD62L and CD55 in Ly49H+ NK cells before  
(Naive) or day 28 after infection with MCMV  
(Memory; e) or OT-I CD8+ T cells before or 60 d (Ly6c, CD49a and CD55) or 100 d (CD62L) after infection with VSV (f). Data (b,c,e,f) are 
representative of at least two independent experiments (error bars (b,c), s.e.m.). Data presented are based on the analysis of a minimum of three 
independent replicates per cell type (d).
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individual genes themselves, is needed to define the memory NK cell 
state. In sum, our study has provided a comprehensive transcriptome 
perspective on various stages of NK cell function in the context of 
closely related T lymphocytes. Our data simultaneously support and 
extend published findings while providing a unique resource for the 
further investigation of NK cell biology.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes.  GEO: microarray data, GSE15907.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Mice and infection. In accordance with standard operating protocols of the 
ImmGen Project, six- to eight week-old male C57BL/6 and B6.SJL-Ptprca 
Pepcb/BoyJ congenic CD45.1+ mice (Jackson Laboratory) were maintained 
under specific pathogen–free conditions. C57BL/6 mice were infected by intra-
peritoneal injection of MCMV Smith strain (5 × 104 plaque-forming units). 
An adoptive-transfer system was used for the generation of memory NK cells 
as described40. Purified NK cells from B6.SJL-Ptprca Pepcb/BoyJ mice were 
adoptively transferred into Ly49H-deficient C57BL/6 mice 1 d before viral 
infection. In the case of CD8+ T cells, 5 × 103 CD45.1+ OT-I T cells were trans-
ferred into C57BL/6 recipients. At 1 d after transfer, mice were infected with  
5 × 103 colony-forming units of ovalbumin-expressing L. monocytogenes or  
5 × 103 plaque-forming units of ovalbumin-expressing VSV. To obtain naive 
OT-I cells, 5 × 106 CD45.1+ OT-I cells were transferred into C57BL/6 mice and 
were purified from mice 2 d after transfer. Experiments were done according to 
the Institutional Animal Care and Use Committee guidelines of the University 
of California, San Francisco, San Francisco.

Cell sorting. Cells were prepared according to standard operating protocols 
of the ImmGen Project. Naive NK or Ly49H+ NK cells were isolated from 
spleens of uninfected C57BL/6 mice. Effector Ly49H+ NK cells were isolated 
from C57BL/6 mice on days 1.5 and 7 after MCMV infection. Memory Ly49H+ 
NK cells were isolated from spleens of reconstituted Ly49H-deficient mice on 
day 27 after MCMV infection. All samples were pooled from three mice and 
stained for cell-surface markers, and ~1 × 104 to 3 × 104 cells (>99% pure) 
were double-sorted directly into Trizol (Invitrogen) with a FACSAria (BD). 
For each population, independent triplicate samples were sorted, except for 
memory Ly49H+ NK cells, which independent duplicate samples were sorted 
from 16 mice.

Microarray hybridization and analysis. Isolated RNA was amplified and 
prepared for hybridization to the Affymetrix MoGene 1.0 ST array with 
the GeneChip Whole Transcript Sense Target Labeling Assay in accordance 

with manufacturer’s instructions. Raw data were normalized with the robust 
multichip average algorithm in the ‘Expression File Creator’ module (Gene 
Pattern). Raw data from all ImmGen samples are available in the GEO data-
base (GSE15907); processed data are available on the ImmGen website. The 
consortium-standardized post-normalization threshold of 120 was taken to 
indicate expression above background, and probes were included in compari-
sons only if they were expressed in all replicates of at least one population. 
Additional details49 are provided as Supplementary Notes 1 and 2.

Flow cytometry. Fc receptors were blocked with mAb to CD16 and CD32  
(10 µg/ml; 2.4G2; UCSF Antibody Core) before surface staining. The following 
antibodies to cell surface markers and intracellular proteins were used: anti-
body to NK1.1 (anti-NK1.1; PK136), anti-NKp46 (29A1.4), anti-TCRβ (H57-
597), anti-CD4 (RM4-5 or GK1.5), anti-CD8 (53-6.7), anti-CD3 (145-2C11 or 
eBio500A2), anti-CD5 (53-7.3), anti-CD19 (MB19-1), anti-CD25 (PC61.5), 
anti-Gr-1 (RB6-8C5), anti-B220 (RA3-6B2), anti-Ter119 (Ter119), anti-Ly49E-
Ly49F (CM4), anti-y49H (3D10), anti-Ly49I (YLI-90), anti-NKG2D (MI-6 or 
DX5), anti-NKG2A-NKG2C-NKG2E (20d5), anti-CD11b (M1/70), anti-CD69 
(H1.2F3), anti-KLRG1 (2F1), anti-CD45.1 (A20), anti-CD45.2 (104), anti-
IFN-γ (XMG1.2), anti-Bcl-2 (10C4), anti-CD45.1 (A20) and anti-CD45.2 (104; 
all from eBioscience); anti-CD11c (N418), anti-CD55 (RIKO-3), anti-CD69 
(H1.2F3), anti-CD90 (30-H12) and anti-T-bet (4B10; all from BioLegend); 
anti-CD49a (Ha31/8), anti-CD62L (MEL-14), anti-Ly6C (AL-21), anti-TCRγδ 
(GL3), anti-granzyme B (GB11), antibody to phosphorylated STAT1 (4a), anti-
body to phosphorylated STAT3 (4/P-STAT3) and antibody to phosphorylated 
STAT4 (38/p-Stat4; all from BD); Live/Dead Fixable Near-IR dye (L10119; 
Invitrogen); and anti-Syk (5F5; provided by A. Weiss). Intracellular staining 
was done according to manufacturer’s instructions (BD). All cells were ana-
lyzed on an LSR II (BD) with FloJo software (Tree Star).

49.	Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting 
lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 
(2012).
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